Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
|
|
|
5 |
AVAILABLE_MODELS = {
|
6 |
"distilgpt2": "distilgpt2",
|
7 |
"bloomz-560m": "bigscience/bloomz-560m",
|
@@ -10,80 +13,88 @@ AVAILABLE_MODELS = {
|
|
10 |
"pythia-160m": "EleutherAI/pythia-160m"
|
11 |
}
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def load_model(model_name):
|
16 |
-
global
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
return f"Successfully loaded {model_name}"
|
22 |
-
except Exception as e:
|
23 |
-
return f"Error loading model: {str(e)}"
|
24 |
|
25 |
-
def
|
26 |
-
global
|
27 |
-
if not generator:
|
28 |
-
load_model(model_name)
|
29 |
|
30 |
-
model
|
31 |
-
|
|
|
32 |
|
|
|
|
|
33 |
with torch.no_grad():
|
34 |
-
outputs =
|
35 |
logits = outputs.logits[0, -1, :]
|
36 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
37 |
|
38 |
-
top_k_probs, top_k_indices = torch.topk(probs, k=
|
39 |
-
top_k_tokens = [
|
40 |
-
predictions = "\n".join([f"'{token}' : {prob:.4f}" for token, prob in zip(top_k_tokens, top_k_probs)])
|
41 |
|
42 |
-
return top_k_tokens,
|
43 |
|
44 |
-
def
|
45 |
-
if
|
46 |
-
text += token_choice.strip("'")
|
47 |
if custom_token:
|
48 |
text += custom_token
|
49 |
-
|
50 |
-
tokens, predictions = get_predictions(text, model_name)
|
51 |
-
return text, gr.Dropdown(choices=[f"'{t}'" for t in tokens]), predictions
|
52 |
-
|
53 |
-
with gr.Blocks() as demo:
|
54 |
-
gr.Markdown("# Interactive Text Generation")
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
value="distilgpt2",
|
59 |
-
label="Select Model"
|
60 |
-
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
label="Text",
|
65 |
-
placeholder="Type or select tokens to generate text..."
|
66 |
-
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
6 |
|
7 |
+
# Available models
|
8 |
AVAILABLE_MODELS = {
|
9 |
"distilgpt2": "distilgpt2",
|
10 |
"bloomz-560m": "bigscience/bloomz-560m",
|
|
|
13 |
"pythia-160m": "EleutherAI/pythia-160m"
|
14 |
}
|
15 |
|
16 |
+
# Access token for Hugging Face
|
17 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
18 |
+
|
19 |
+
# Initialize model and tokenizer globally
|
20 |
+
current_model = None
|
21 |
+
current_tokenizer = None
|
22 |
+
current_model_name = None
|
23 |
|
24 |
def load_model(model_name):
|
25 |
+
global current_model, current_tokenizer, current_model_name
|
26 |
+
if current_model_name != model_name:
|
27 |
+
current_model = AutoModelForCausalLM.from_pretrained(AVAILABLE_MODELS[model_name], use_auth_token=HF_TOKEN)
|
28 |
+
current_tokenizer = AutoTokenizer.from_pretrained(AVAILABLE_MODELS[model_name], use_auth_token=HF_TOKEN)
|
29 |
+
current_model_name = model_name
|
|
|
|
|
|
|
30 |
|
31 |
+
def get_next_token_predictions(text, model_name, top_k=10):
|
32 |
+
global current_model, current_tokenizer
|
|
|
|
|
33 |
|
34 |
+
# Load model if needed
|
35 |
+
if current_model_name != model_name:
|
36 |
+
load_model(model_name)
|
37 |
|
38 |
+
# Get predictions
|
39 |
+
inputs = current_tokenizer(text, return_tensors="pt")
|
40 |
with torch.no_grad():
|
41 |
+
outputs = current_model(**inputs)
|
42 |
logits = outputs.logits[0, -1, :]
|
43 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
44 |
|
45 |
+
top_k_probs, top_k_indices = torch.topk(probs, k=top_k)
|
46 |
+
top_k_tokens = [current_tokenizer.decode([idx.item()]) for idx in top_k_indices]
|
|
|
47 |
|
48 |
+
return top_k_tokens, top_k_probs.tolist()
|
49 |
|
50 |
+
def predict_next_token(text, model_name, custom_token=""):
|
51 |
+
# Add custom token if provided
|
|
|
52 |
if custom_token:
|
53 |
text += custom_token
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Get predictions
|
56 |
+
tokens, probs = get_next_token_predictions(text, model_name)
|
|
|
|
|
|
|
57 |
|
58 |
+
# Format predictions
|
59 |
+
predictions = "\n".join([f"'{token}' : {prob:.4f}" for token, prob in zip(tokens, probs)])
|
|
|
|
|
|
|
60 |
|
61 |
+
return text, gr.Dropdown(choices=[f"'{t}'" for t in tokens]), predictions
|
62 |
+
|
63 |
+
# Page content
|
64 |
+
title = "Interactive Text Generation with Transformer Models"
|
65 |
+
description = """
|
66 |
+
This application allows you to interactively generate text using various transformer models.
|
67 |
+
You can either select from the predicted next tokens or write your own tokens to continue the text generation.
|
68 |
+
|
69 |
+
Select a model, start typing or choose from the predicted tokens, and see how the model continues your text!
|
70 |
+
"""
|
71 |
+
|
72 |
+
# Example inputs
|
73 |
+
examples = [
|
74 |
+
["The quick brown fox", "distilgpt2"],
|
75 |
+
["In a galaxy far", "gpt2-medium"],
|
76 |
+
["Once upon a time", "opt-350m"],
|
77 |
+
]
|
78 |
+
|
79 |
+
# Create the interface
|
80 |
+
app = gr.Interface(
|
81 |
+
fn=predict_next_token,
|
82 |
+
inputs=[
|
83 |
+
gr.Textbox(lines=5, label="Text"),
|
84 |
+
gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="distilgpt2", label="Model"),
|
85 |
+
gr.Textbox(label="Custom token (optional)")
|
86 |
+
],
|
87 |
+
outputs=[
|
88 |
+
gr.Textbox(lines=5, label="Generated text"),
|
89 |
+
gr.Dropdown(label="Predicted tokens"),
|
90 |
+
gr.Textbox(lines=10, label="Token probabilities")
|
91 |
+
],
|
92 |
+
theme="huggingface",
|
93 |
+
title=title,
|
94 |
+
description=description,
|
95 |
+
examples=examples,
|
96 |
+
allow_flagging="manual"
|
97 |
+
)
|
98 |
|
99 |
+
# Launch the app
|
100 |
+
app.launch()
|