Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
from typing import Tuple, List, Dict
|
5 |
-
import numpy as np
|
6 |
|
7 |
-
# Select smaller models that are suitable for this task
|
8 |
AVAILABLE_MODELS = {
|
9 |
"distilgpt2": "distilgpt2",
|
10 |
"bloomz-560m": "bigscience/bloomz-560m",
|
@@ -19,7 +16,6 @@ class TextGenerator:
|
|
19 |
self.tokenizer = None
|
20 |
|
21 |
def load_model(self, model_name: str) -> str:
|
22 |
-
"""Load the selected model and tokenizer"""
|
23 |
try:
|
24 |
self.model = AutoModelForCausalLM.from_pretrained(AVAILABLE_MODELS[model_name])
|
25 |
self.tokenizer = AutoTokenizer.from_pretrained(AVAILABLE_MODELS[model_name])
|
@@ -27,8 +23,7 @@ class TextGenerator:
|
|
27 |
except Exception as e:
|
28 |
return f"Error loading model: {str(e)}"
|
29 |
|
30 |
-
def get_next_token_predictions(self, text: str, top_k: int = 10)
|
31 |
-
"""Get predictions for the next token"""
|
32 |
if not self.model or not self.tokenizer:
|
33 |
return [], []
|
34 |
|
@@ -40,12 +35,12 @@ class TextGenerator:
|
|
40 |
|
41 |
top_k_probs, top_k_indices = torch.topk(probs, top_k)
|
42 |
top_k_tokens = [self.tokenizer.decode([idx.item()]) for idx in top_k_indices]
|
43 |
-
top_k_probs = top_k_probs.tolist()
|
44 |
|
45 |
-
return top_k_tokens, top_k_probs
|
46 |
|
47 |
-
|
48 |
-
|
|
|
49 |
if not tokens or not probs:
|
50 |
return "No predictions available"
|
51 |
|
@@ -54,83 +49,40 @@ def format_predictions(tokens: List[str], probs: List[float]) -> str:
|
|
54 |
formatted += f"'{token}' : {prob:.4f}\n"
|
55 |
return formatted
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
def update_output(model_name: str, text: str, custom_token: str, selected_token: str) -> Tuple[str, str, str, Dict, str]:
|
60 |
-
"""Update the interface based on user interactions"""
|
61 |
output = text
|
62 |
|
63 |
-
# Load model if it changed
|
64 |
if not generator.model or generator.model.name_or_path != AVAILABLE_MODELS[model_name]:
|
65 |
load_message = generator.load_model(model_name)
|
66 |
if "Error" in load_message:
|
67 |
return text, "", "", gr.update(choices=[]), load_message
|
68 |
|
69 |
-
# Add custom token or selected token
|
70 |
if custom_token:
|
71 |
output += custom_token
|
72 |
elif selected_token:
|
73 |
output += selected_token.strip("'")
|
74 |
|
75 |
-
# Get new predictions
|
76 |
tokens, probs = generator.get_next_token_predictions(output)
|
77 |
predictions = format_predictions(tokens, probs)
|
78 |
-
|
79 |
-
# Update dropdown choices
|
80 |
token_choices = [f"'{token}'" for token in tokens]
|
81 |
|
82 |
return output, "", "", gr.update(choices=token_choices), predictions
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
)
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
placeholder="Start typing or select a token..."
|
103 |
-
)
|
104 |
-
|
105 |
-
with gr.Row():
|
106 |
-
custom_token = gr.Textbox(
|
107 |
-
label="Custom Token",
|
108 |
-
placeholder="Type your own token..."
|
109 |
-
)
|
110 |
-
token_dropdown = gr.Dropdown(
|
111 |
-
choices=[],
|
112 |
-
label="Select from predicted tokens"
|
113 |
-
)
|
114 |
-
|
115 |
-
with gr.Row():
|
116 |
-
predictions_output = gr.Textbox(
|
117 |
-
label="Predictions",
|
118 |
-
lines=12
|
119 |
-
)
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
status_output = gr.Textbox(
|
123 |
-
label="Status",
|
124 |
-
lines=1
|
125 |
-
)
|
126 |
-
|
127 |
-
# Update when model changes or token is added
|
128 |
-
for trigger in [model_dropdown, custom_token, token_dropdown]:
|
129 |
-
trigger.change(
|
130 |
-
fn=update_output,
|
131 |
-
inputs=[model_dropdown, text_input, custom_token, token_dropdown],
|
132 |
-
outputs=[text_input, custom_token, token_dropdown, token_dropdown, predictions_output]
|
133 |
-
)
|
134 |
-
|
135 |
-
# For Hugging Face Spaces, we just need to expose the demo
|
136 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
|
|
5 |
AVAILABLE_MODELS = {
|
6 |
"distilgpt2": "distilgpt2",
|
7 |
"bloomz-560m": "bigscience/bloomz-560m",
|
|
|
16 |
self.tokenizer = None
|
17 |
|
18 |
def load_model(self, model_name: str) -> str:
|
|
|
19 |
try:
|
20 |
self.model = AutoModelForCausalLM.from_pretrained(AVAILABLE_MODELS[model_name])
|
21 |
self.tokenizer = AutoTokenizer.from_pretrained(AVAILABLE_MODELS[model_name])
|
|
|
23 |
except Exception as e:
|
24 |
return f"Error loading model: {str(e)}"
|
25 |
|
26 |
+
def get_next_token_predictions(self, text: str, top_k: int = 10):
|
|
|
27 |
if not self.model or not self.tokenizer:
|
28 |
return [], []
|
29 |
|
|
|
35 |
|
36 |
top_k_probs, top_k_indices = torch.topk(probs, top_k)
|
37 |
top_k_tokens = [self.tokenizer.decode([idx.item()]) for idx in top_k_indices]
|
|
|
38 |
|
39 |
+
return top_k_tokens, top_k_probs.tolist()
|
40 |
|
41 |
+
generator = TextGenerator()
|
42 |
+
|
43 |
+
def format_predictions(tokens, probs):
|
44 |
if not tokens or not probs:
|
45 |
return "No predictions available"
|
46 |
|
|
|
49 |
formatted += f"'{token}' : {prob:.4f}\n"
|
50 |
return formatted
|
51 |
|
52 |
+
def update_output(model_name, text, custom_token, selected_token):
|
|
|
|
|
|
|
53 |
output = text
|
54 |
|
|
|
55 |
if not generator.model or generator.model.name_or_path != AVAILABLE_MODELS[model_name]:
|
56 |
load_message = generator.load_model(model_name)
|
57 |
if "Error" in load_message:
|
58 |
return text, "", "", gr.update(choices=[]), load_message
|
59 |
|
|
|
60 |
if custom_token:
|
61 |
output += custom_token
|
62 |
elif selected_token:
|
63 |
output += selected_token.strip("'")
|
64 |
|
|
|
65 |
tokens, probs = generator.get_next_token_predictions(output)
|
66 |
predictions = format_predictions(tokens, probs)
|
|
|
|
|
67 |
token_choices = [f"'{token}'" for token in tokens]
|
68 |
|
69 |
return output, "", "", gr.update(choices=token_choices), predictions
|
70 |
|
71 |
+
demo = gr.Interface(
|
72 |
+
fn=update_output,
|
73 |
+
inputs=[
|
74 |
+
gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="distilgpt2", label="Select Model"),
|
75 |
+
gr.Textbox(lines=5, label="Generated Text", placeholder="Start typing or select a token..."),
|
76 |
+
gr.Textbox(label="Custom Token", placeholder="Type your own token..."),
|
77 |
+
gr.Dropdown(choices=[], label="Select from predicted tokens")
|
78 |
+
],
|
79 |
+
outputs=[
|
80 |
+
gr.Textbox(lines=5, label="Generated Text"),
|
81 |
+
gr.Textbox(label="Custom Token"),
|
82 |
+
gr.Textbox(label="Selected Token"),
|
83 |
+
gr.Dropdown(label="Predicted Tokens"),
|
84 |
+
gr.Textbox(lines=12, label="Predictions")
|
85 |
+
],
|
86 |
+
title="Interactive Text Generation",
|
87 |
+
description="Generate text by selecting predicted tokens or writing your own."
|
88 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|