File size: 17,787 Bytes
3c149ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

import collections
import CLIP_.clip as clip
import torch
import torch.nn as nn
from torchvision import models, transforms


class Loss(nn.Module):
    def __init__(self, args):
        super(Loss, self).__init__()
        self.args = args
        self.percep_loss = args.percep_loss

        self.train_with_clip = args.train_with_clip
        self.clip_weight = args.clip_weight
        self.start_clip = args.start_clip

        self.clip_conv_loss = args.clip_conv_loss
        self.clip_fc_loss_weight = args.clip_fc_loss_weight
        self.clip_text_guide = args.clip_text_guide

        self.losses_to_apply = self.get_losses_to_apply()

        self.loss_mapper = \
            {
                "clip": CLIPLoss(args),
                "clip_conv_loss": CLIPConvLoss(args)
            }

    def get_losses_to_apply(self):
        losses_to_apply = []
        if self.percep_loss != "none":
            losses_to_apply.append(self.percep_loss)
        if self.train_with_clip and self.start_clip == 0:
            losses_to_apply.append("clip")
        if self.clip_conv_loss:
            losses_to_apply.append("clip_conv_loss")
        if self.clip_text_guide:
            losses_to_apply.append("clip_text")
        return losses_to_apply

    def update_losses_to_apply(self, epoch):
        if "clip" not in self.losses_to_apply:
            if self.train_with_clip:
                if epoch > self.start_clip:
                    self.losses_to_apply.append("clip")

    def forward(self, sketches, targets, color_parameters, renderer, epoch, points_optim=None, mode="train"):
        loss = 0
        self.update_losses_to_apply(epoch)

        losses_dict = dict.fromkeys(
            self.losses_to_apply, torch.tensor([0.0]).to(self.args.device))
        loss_coeffs = dict.fromkeys(self.losses_to_apply, 1.0)
        loss_coeffs["clip"] = self.clip_weight
        loss_coeffs["clip_text"] = self.clip_text_guide

        for loss_name in self.losses_to_apply:
            if loss_name in ["clip_conv_loss"]:
                conv_loss = self.loss_mapper[loss_name](
                    sketches, targets, mode)
                for layer in conv_loss.keys():
                    losses_dict[layer] = conv_loss[layer]
            elif loss_name == "l2":
                losses_dict[loss_name] = self.loss_mapper[loss_name](
                    sketches, targets).mean()
            else:
                losses_dict[loss_name] = self.loss_mapper[loss_name](
                    sketches, targets, mode).mean()
            # loss = loss + self.loss_mapper[loss_name](sketches, targets).mean() * loss_coeffs[loss_name]

        for key in self.losses_to_apply:
            # loss = loss + losses_dict[key] * loss_coeffs[key]
            losses_dict[key] = losses_dict[key] * loss_coeffs[key]
        # print(losses_dict)
        return losses_dict


class CLIPLoss(torch.nn.Module):
    def __init__(self, args):
        super(CLIPLoss, self).__init__()

        self.args = args
        self.model, clip_preprocess = clip.load(
            'ViT-B/32', args.device, jit=False)
        self.model.eval()
        self.preprocess = transforms.Compose(
            [clip_preprocess.transforms[-1]])  # clip normalisation
        self.device = args.device
        self.NUM_AUGS = args.num_aug_clip
        augemntations = []
        if "affine" in args.augemntations:
            augemntations.append(transforms.RandomPerspective(
                fill=0, p=1.0, distortion_scale=0.5))
            augemntations.append(transforms.RandomResizedCrop(
                224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
        augemntations.append(
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
        self.augment_trans = transforms.Compose(augemntations)

        self.calc_target = True
        self.include_target_in_aug = args.include_target_in_aug
        self.counter = 0
        self.augment_both = args.augment_both

    def forward(self, sketches, targets, mode="train"):
        if self.calc_target:
            targets_ = self.preprocess(targets).to(self.device)
            self.targets_features = self.model.encode_image(targets_).detach()
            self.calc_target = False

        if mode == "eval":
            # for regular clip distance, no augmentations
            with torch.no_grad():
                sketches = self.preprocess(sketches).to(self.device)
                sketches_features = self.model.encode_image(sketches)
                return 1. - torch.cosine_similarity(sketches_features, self.targets_features)

        loss_clip = 0
        sketch_augs = []
        img_augs = []
        for n in range(self.NUM_AUGS):
            augmented_pair = self.augment_trans(torch.cat([sketches, targets]))
            sketch_augs.append(augmented_pair[0].unsqueeze(0))

        sketch_batch = torch.cat(sketch_augs)
        # sketch_utils.plot_batch(img_batch, sketch_batch, self.args, self.counter, use_wandb=False, title="fc_aug{}_iter{}_{}.jpg".format(1, self.counter, mode))
        # if self.counter % 100 == 0:
        # sketch_utils.plot_batch(img_batch, sketch_batch, self.args, self.counter, use_wandb=False, title="aug{}_iter{}_{}.jpg".format(1, self.counter, mode))

        sketch_features = self.model.encode_image(sketch_batch)

        for n in range(self.NUM_AUGS):
            loss_clip += (1. - torch.cosine_similarity(
                sketch_features[n:n+1], self.targets_features, dim=1))
        self.counter += 1
        return loss_clip
        # return 1. - torch.cosine_similarity(sketches_features, self.targets_features)


class LPIPS(torch.nn.Module):
    def __init__(self, pretrained=True, normalize=True, pre_relu=True, device=None):
        """
        Args:
            pre_relu(bool): if True, selects features **before** reLU activations
        """
        super(LPIPS, self).__init__()
        # VGG using perceptually-learned weights (LPIPS metric)
        self.normalize = normalize
        self.pretrained = pretrained
        augemntations = []
        augemntations.append(transforms.RandomPerspective(
            fill=0, p=1.0, distortion_scale=0.5))
        augemntations.append(transforms.RandomResizedCrop(
            224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
        self.augment_trans = transforms.Compose(augemntations)
        self.feature_extractor = LPIPS._FeatureExtractor(
            pretrained, pre_relu).to(device)

    def _l2_normalize_features(self, x, eps=1e-10):
        nrm = torch.sqrt(torch.sum(x * x, dim=1, keepdim=True))
        return x / (nrm + eps)

    def forward(self, pred, target, mode="train"):
        """Compare VGG features of two inputs."""

        # Get VGG features

        sketch_augs, img_augs = [pred], [target]
        if mode == "train":
            for n in range(4):
                augmented_pair = self.augment_trans(torch.cat([pred, target]))
                sketch_augs.append(augmented_pair[0].unsqueeze(0))
                img_augs.append(augmented_pair[1].unsqueeze(0))

        xs = torch.cat(sketch_augs, dim=0)
        ys = torch.cat(img_augs, dim=0)

        pred = self.feature_extractor(xs)
        target = self.feature_extractor(ys)

        # L2 normalize features
        if self.normalize:
            pred = [self._l2_normalize_features(f) for f in pred]
            target = [self._l2_normalize_features(f) for f in target]

        # TODO(mgharbi) Apply Richard's linear weights?

        if self.normalize:
            diffs = [torch.sum((p - t) ** 2, 1)
                     for (p, t) in zip(pred, target)]
        else:
            # mean instead of sum to avoid super high range
            diffs = [torch.mean((p - t) ** 2, 1)
                     for (p, t) in zip(pred, target)]

        # Spatial average
        diffs = [diff.mean([1, 2]) for diff in diffs]

        return sum(diffs)

    class _FeatureExtractor(torch.nn.Module):
        def __init__(self, pretrained, pre_relu):
            super(LPIPS._FeatureExtractor, self).__init__()
            vgg_pretrained = models.vgg16(pretrained=pretrained).features

            self.breakpoints = [0, 4, 9, 16, 23, 30]
            if pre_relu:
                for i, _ in enumerate(self.breakpoints[1:]):
                    self.breakpoints[i + 1] -= 1

            # Split at the maxpools
            for i, b in enumerate(self.breakpoints[:-1]):
                ops = torch.nn.Sequential()
                for idx in range(b, self.breakpoints[i + 1]):
                    op = vgg_pretrained[idx]
                    ops.add_module(str(idx), op)
                # print(ops)
                self.add_module("group{}".format(i), ops)

            # No gradients
            for p in self.parameters():
                p.requires_grad = False

            # Torchvision's normalization: <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>
            self.register_buffer("shift", torch.Tensor(
                [0.485, 0.456, 0.406]).view(1, 3, 1, 1))
            self.register_buffer("scale", torch.Tensor(
                [0.229, 0.224, 0.225]).view(1, 3, 1, 1))

        def forward(self, x):
            feats = []
            x = (x - self.shift) / self.scale
            for idx in range(len(self.breakpoints) - 1):
                m = getattr(self, "group{}".format(idx))
                x = m(x)
                feats.append(x)
            return feats


class L2_(torch.nn.Module):
    def __init__(self):
        """
        Args:
            pre_relu(bool): if True, selects features **before** reLU activations
        """
        super(L2_, self).__init__()
        # VGG using perceptually-learned weights (LPIPS metric)
        augemntations = []
        augemntations.append(transforms.RandomPerspective(
            fill=0, p=1.0, distortion_scale=0.5))
        augemntations.append(transforms.RandomResizedCrop(
            224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
        augemntations.append(
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
        self.augment_trans = transforms.Compose(augemntations)
        # LOG.warning("LPIPS is untested")

    def forward(self, pred, target, mode="train"):
        """Compare VGG features of two inputs."""

        # Get VGG features

        sketch_augs, img_augs = [pred], [target]
        if mode == "train":
            for n in range(4):
                augmented_pair = self.augment_trans(torch.cat([pred, target]))
                sketch_augs.append(augmented_pair[0].unsqueeze(0))
                img_augs.append(augmented_pair[1].unsqueeze(0))

        pred = torch.cat(sketch_augs, dim=0)
        target = torch.cat(img_augs, dim=0)
        diffs = [torch.square(p - t).mean() for (p, t) in zip(pred, target)]
        return sum(diffs)


class CLIPVisualEncoder(nn.Module):
    def __init__(self, clip_model):
        super().__init__()
        self.clip_model = clip_model
        self.featuremaps = None

        for i in range(12):  # 12 resblocks in VIT visual transformer
            self.clip_model.visual.transformer.resblocks[i].register_forward_hook(
                self.make_hook(i))

    def make_hook(self, name):
        def hook(module, input, output):
            if len(output.shape) == 3:
                self.featuremaps[name] = output.permute(
                    1, 0, 2)  # LND -> NLD bs, smth, 768
            else:
                self.featuremaps[name] = output

        return hook

    def forward(self, x):
        self.featuremaps = collections.OrderedDict()
        fc_features = self.clip_model.encode_image(x).float()
        featuremaps = [self.featuremaps[k] for k in range(12)]

        return fc_features, featuremaps


def l2_layers(xs_conv_features, ys_conv_features, clip_model_name):
    return [torch.square(x_conv - y_conv).mean() for x_conv, y_conv in
            zip(xs_conv_features, ys_conv_features)]


def l1_layers(xs_conv_features, ys_conv_features, clip_model_name):
    return [torch.abs(x_conv - y_conv).mean() for x_conv, y_conv in
            zip(xs_conv_features, ys_conv_features)]


def cos_layers(xs_conv_features, ys_conv_features, clip_model_name):
    if "RN" in clip_model_name:
        return [torch.square(x_conv, y_conv, dim=1).mean() for x_conv, y_conv in
                zip(xs_conv_features, ys_conv_features)]
    return [(1 - torch.cosine_similarity(x_conv, y_conv, dim=1)).mean() for x_conv, y_conv in
            zip(xs_conv_features, ys_conv_features)]


class CLIPConvLoss(torch.nn.Module):
    def __init__(self, args):
        super(CLIPConvLoss, self).__init__()
        self.clip_model_name = args.clip_model_name
        assert self.clip_model_name in [
            "RN50",
            "RN101",
            "RN50x4",
            "RN50x16",
            "ViT-B/32",
            "ViT-B/16",
        ]

        self.clip_conv_loss_type = args.clip_conv_loss_type
        self.clip_fc_loss_type = "Cos"  # args.clip_fc_loss_type
        assert self.clip_conv_loss_type in [
            "L2", "Cos", "L1",
        ]
        assert self.clip_fc_loss_type in [
            "L2", "Cos", "L1",
        ]

        self.distance_metrics = \
            {
                "L2": l2_layers,
                "L1": l1_layers,
                "Cos": cos_layers
            }

        self.model, clip_preprocess = clip.load(
            self.clip_model_name, args.device, jit=False)

        if self.clip_model_name.startswith("ViT"):
            self.visual_encoder = CLIPVisualEncoder(self.model)

        else:
            self.visual_model = self.model.visual
            layers = list(self.model.visual.children())
            init_layers = torch.nn.Sequential(*layers)[:8]
            self.layer1 = layers[8]
            self.layer2 = layers[9]
            self.layer3 = layers[10]
            self.layer4 = layers[11]
            self.att_pool2d = layers[12]

        self.args = args

        self.img_size = clip_preprocess.transforms[1].size
        self.model.eval()
        self.target_transform = transforms.Compose([
            transforms.ToTensor(),
        ])  # clip normalisation
        self.normalize_transform = transforms.Compose([
            clip_preprocess.transforms[0],  # Resize
            clip_preprocess.transforms[1],  # CenterCrop
            clip_preprocess.transforms[-1],  # Normalize
        ])

        self.model.eval()
        self.device = args.device
        self.num_augs = self.args.num_aug_clip

        augemntations = []
        if "affine" in args.augemntations:
            augemntations.append(transforms.RandomPerspective(
                fill=0, p=1.0, distortion_scale=0.5))
            augemntations.append(transforms.RandomResizedCrop(
                224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
        augemntations.append(
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
        self.augment_trans = transforms.Compose(augemntations)

        self.clip_fc_layer_dims = None  # self.args.clip_fc_layer_dims
        self.clip_conv_layer_dims = None  # self.args.clip_conv_layer_dims
        self.clip_fc_loss_weight = args.clip_fc_loss_weight
        self.counter = 0

    def forward(self, sketch, target, mode="train"):
        """
        Parameters
        ----------
        sketch: Torch Tensor [1, C, H, W]
        target: Torch Tensor [1, C, H, W]
        """
        #         y = self.target_transform(target).to(self.args.device)
        conv_loss_dict = {}
        x = sketch.to(self.device)
        y = target.to(self.device)
        sketch_augs, img_augs = [self.normalize_transform(x)], [
            self.normalize_transform(y)]
        if mode == "train":
            for n in range(self.num_augs):
                augmented_pair = self.augment_trans(torch.cat([x, y]))
                sketch_augs.append(augmented_pair[0].unsqueeze(0))
                img_augs.append(augmented_pair[1].unsqueeze(0))

        xs = torch.cat(sketch_augs, dim=0).to(self.device)
        ys = torch.cat(img_augs, dim=0).to(self.device)

        if self.clip_model_name.startswith("RN"):
            xs_fc_features, xs_conv_features = self.forward_inspection_clip_resnet(
                xs.contiguous())
            ys_fc_features, ys_conv_features = self.forward_inspection_clip_resnet(
                ys.detach())

        else:
            xs_fc_features, xs_conv_features = self.visual_encoder(xs)
            ys_fc_features, ys_conv_features = self.visual_encoder(ys)

        conv_loss = self.distance_metrics[self.clip_conv_loss_type](
            xs_conv_features, ys_conv_features, self.clip_model_name)

        for layer, w in enumerate(self.args.clip_conv_layer_weights):
            if w:
                conv_loss_dict[f"clip_conv_loss_layer{layer}"] = conv_loss[layer] * w

        if self.clip_fc_loss_weight:
            # fc distance is always cos
            fc_loss = (1 - torch.cosine_similarity(xs_fc_features,
                       ys_fc_features, dim=1)).mean()
            conv_loss_dict["fc"] = fc_loss * self.clip_fc_loss_weight

        self.counter += 1
        return conv_loss_dict

    def forward_inspection_clip_resnet(self, x):
        def stem(m, x):
            for conv, bn in [(m.conv1, m.bn1), (m.conv2, m.bn2), (m.conv3, m.bn3)]:
                x = m.relu(bn(conv(x)))
            x = m.avgpool(x)
            return x
        x = x.type(self.visual_model.conv1.weight.dtype)
        x = stem(self.visual_model, x)
        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        y = self.att_pool2d(x4)
        return y, [x, x1, x2, x3, x4]