File size: 21,511 Bytes
3c149ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import random
import CLIP_.clip as clip
import numpy as np
import pydiffvg
import sketch_utils as utils
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
from skimage.color import rgb2gray
from skimage.filters import threshold_otsu
from torchvision import transforms


class Painter(torch.nn.Module):
    def __init__(self, args,
                num_strokes=4,
                num_segments=4,
                imsize=224,
                device=None,
                target_im=None,
                mask=None):
        super(Painter, self).__init__()

        self.args = args
        self.num_paths = num_strokes
        self.num_segments = num_segments
        self.width = args.width
        self.control_points_per_seg = args.control_points_per_seg
        self.opacity_optim = args.force_sparse
        self.num_stages = args.num_stages
        self.add_random_noise = "noise" in args.augemntations
        self.noise_thresh = args.noise_thresh
        self.softmax_temp = args.softmax_temp

        self.shapes = []
        self.shape_groups = []
        self.device = device
        self.canvas_width, self.canvas_height = imsize, imsize
        self.points_vars = []
        self.color_vars = []
        self.color_vars_threshold = args.color_vars_threshold

        self.path_svg = args.path_svg
        self.strokes_per_stage = self.num_paths
        self.optimize_flag = []

        # attention related for strokes initialisation
        self.attention_init = args.attention_init
        self.target_path = args.target
        self.saliency_model = args.saliency_model
        self.xdog_intersec = args.xdog_intersec
        self.mask_object = args.mask_object_attention
        
        self.text_target = args.text_target # for clip gradients
        self.saliency_clip_model = args.saliency_clip_model
        self.define_attention_input(target_im)
        self.mask = mask
        self.attention_map = self.set_attention_map() if self.attention_init else None
        
        self.thresh = self.set_attention_threshold_map() if self.attention_init else None
        self.strokes_counter = 0 # counts the number of calls to "get_path"        
        self.epoch = 0
        self.final_epoch = args.num_iter - 1
        

    def init_image(self, stage=0):
        if stage > 0:
            # if multi stages training than add new strokes on existing ones
            # don't optimize on previous strokes
            self.optimize_flag = [False for i in range(len(self.shapes))]
            for i in range(self.strokes_per_stage):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(self.shapes) - 1]),
                                                    fill_color = None,
                                                    stroke_color = stroke_color)
                self.shape_groups.append(path_group)
                self.optimize_flag.append(True)

        else:
            num_paths_exists = 0
            if self.path_svg != "none":
                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = utils.load_svg(self.path_svg)
                # if you want to add more strokes to existing ones and optimize on all of them
                num_paths_exists = len(self.shapes)

            for i in range(num_paths_exists, self.num_paths):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(self.shapes) - 1]),
                                                    fill_color = None,
                                                    stroke_color = stroke_color)
                self.shape_groups.append(path_group)        
            self.optimize_flag = [True for i in range(len(self.shapes))]
        
        img = self.render_warp()
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device = self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
        return img
        # utils.imwrite(img.cpu(), '{}/init.png'.format(args.output_dir), gamma=args.gamma, use_wandb=args.use_wandb, wandb_name="init")

    def get_image(self):
        img = self.render_warp()
        opacity = img[:, :, 3:4]
        img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device = self.device) * (1 - opacity)
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
        return img

    def get_path(self):
        points = []
        self.num_control_points = torch.zeros(self.num_segments, dtype = torch.int32) + (self.control_points_per_seg - 2)
        p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
        points.append(p0)

        for j in range(self.num_segments):
            radius = 0.05
            for k in range(self.control_points_per_seg - 1):
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                points.append(p1)
                p0 = p1
        points = torch.tensor(points).to(self.device)
        points[:, 0] *= self.canvas_width
        points[:, 1] *= self.canvas_height
        
        path = pydiffvg.Path(num_control_points = self.num_control_points,
                                points = points,
                                stroke_width = torch.tensor(self.width),
                                is_closed = False)
        self.strokes_counter += 1
        return path

    def render_warp(self):
        if self.opacity_optim:
            for group in self.shape_groups:
                group.stroke_color.data[:3].clamp_(0., 0.) # to force black stroke
                group.stroke_color.data[-1].clamp_(0., 1.) # opacity
                # group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()
        _render = pydiffvg.RenderFunction.apply
        # uncomment if you want to add random noise
        if self.add_random_noise:
            if random.random() > self.noise_thresh:
                eps = 0.01 * min(self.canvas_width, self.canvas_height)
                for path in self.shapes:
                    path.points.data.add_(eps * torch.randn_like(path.points))
        scene_args = pydiffvg.RenderFunction.serialize_scene(\
            self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
        img = _render(self.canvas_width, # width
                    self.canvas_height, # height
                    2,   # num_samples_x
                    2,   # num_samples_y
                    0,   # seed
                    None,
                    *scene_args)
        return img
    
    def parameters(self):
        self.points_vars = []
        # storkes' location optimization
        for i, path in enumerate(self.shapes):
            if self.optimize_flag[i]:
                path.points.requires_grad = True
                self.points_vars.append(path.points)
        return self.points_vars
    
    def get_points_parans(self):
        return self.points_vars
    
    def set_color_parameters(self):
        # for storkes' color optimization (opacity)
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if self.optimize_flag[i]:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)
        return self.color_vars

    def get_color_parameters(self):
        return self.color_vars
        
    def save_svg(self, output_dir, name):
        pydiffvg.save_svg('{}/{}.svg'.format(output_dir, name), self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)


    def dino_attn(self):
        patch_size=8 # dino hyperparameter
        threshold=0.6

        # for dino model
        mean_imagenet = torch.Tensor([0.485, 0.456, 0.406])[None,:,None,None].to(self.device)
        std_imagenet = torch.Tensor([0.229, 0.224, 0.225])[None,:,None,None].to(self.device)
        totens = transforms.Compose([
            transforms.Resize((self.canvas_height, self.canvas_width)),
            transforms.ToTensor()
            ])

        dino_model = torch.hub.load('facebookresearch/dino:main', 'dino_vits8').eval().to(self.device)
        
        self.main_im = Image.open(self.target_path).convert("RGB")
        main_im_tensor = totens(self.main_im).to(self.device)
        img = (main_im_tensor.unsqueeze(0) - mean_imagenet) / std_imagenet
        w_featmap = img.shape[-2] // patch_size
        h_featmap = img.shape[-1] // patch_size
        
        with torch.no_grad():
            attn = dino_model.get_last_selfattention(img).detach().cpu()[0]

        nh = attn.shape[0]
        attn = attn[:,0,1:].reshape(nh,-1)
        val, idx = torch.sort(attn)
        val /= torch.sum(val, dim=1, keepdim=True)
        cumval = torch.cumsum(val, dim=1)
        th_attn = cumval > (1 - threshold)
        idx2 = torch.argsort(idx)
        for head in range(nh):
            th_attn[head] = th_attn[head][idx2[head]]
        th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
        th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()
        
        attn = attn.reshape(nh, w_featmap, h_featmap).float()
        attn = nn.functional.interpolate(attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()
        
        return attn


    def define_attention_input(self, target_im):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)
        data_transforms = transforms.Compose([
                    preprocess.transforms[-1],
                ])
        self.image_input_attn_clip = data_transforms(target_im).to(self.device)
        

    def clip_attn(self):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)
        text_input = clip.tokenize([self.text_target]).to(self.device)

        if "RN" in self.saliency_clip_model:
            saliency_layer = "layer4"
            attn_map = gradCAM(
                model.visual,
                self.image_input_attn_clip,
                model.encode_text(text_input).float(),
                getattr(model.visual, saliency_layer)
            )
            attn_map = attn_map.squeeze().detach().cpu().numpy()
            attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())

        else:
            # attn_map = interpret(self.image_input_attn_clip, text_input, model, device=self.device, index=0).astype(np.float32)
            attn_map = interpret(self.image_input_attn_clip, text_input, model, device=self.device)
            
        del model
        return attn_map

    def set_attention_map(self):
        assert self.saliency_model in ["dino", "clip"]
        if self.saliency_model == "dino":
            return self.dino_attn()
        elif self.saliency_model == "clip":
            return self.clip_attn()
        

    def softmax(self, x, tau=0.2):
        e_x = np.exp(x / tau)
        return e_x / e_x.sum() 

    def set_inds_clip(self):
        attn_map = (self.attention_map - self.attention_map.min()) / (self.attention_map.max() - self.attention_map.min())
        if self.xdog_intersec:
            xdog = XDoG_()
            im_xdog = xdog(self.image_input_attn_clip[0].permute(1,2,0).cpu().numpy(), k=10)
            intersec_map = (1 - im_xdog) * attn_map
            attn_map = intersec_map
            
        attn_map_soft = np.copy(attn_map)
        attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)
        
        k = self.num_stages * self.num_paths
        self.inds = np.random.choice(range(attn_map.flatten().shape[0]), size=k, replace=False, p=attn_map_soft.flatten())
        self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T
    
        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] =  self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] =  self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return attn_map_soft



    def set_inds_dino(self):
        k = max(3, (self.num_stages * self.num_paths) // 6 + 1) # sample top 3 three points from each attention head
        num_heads = self.attention_map.shape[0]
        self.inds = np.zeros((k * num_heads, 2))
        # "thresh" is used for visualisaiton purposes only
        thresh = torch.zeros(num_heads + 1, self.attention_map.shape[1], self.attention_map.shape[2])
        softmax = nn.Softmax(dim=1)
        for i in range(num_heads):
            # replace "self.attention_map[i]" with "self.attention_map" to get the highest values among
            # all heads. 
            topk, indices = np.unique(self.attention_map[i].numpy(), return_index=True)
            topk = topk[::-1][:k]
            cur_attn_map = self.attention_map[i].numpy()
            # prob function for uniform sampling
            prob = cur_attn_map.flatten()
            prob[prob > topk[-1]] = 1
            prob[prob <= topk[-1]] = 0
            prob = prob / prob.sum()
            thresh[i] = torch.Tensor(prob.reshape(cur_attn_map.shape))

            # choose k pixels from each head            
            inds = np.random.choice(range(cur_attn_map.flatten().shape[0]), size=k, replace=False, p=prob)
            inds = np.unravel_index(inds, cur_attn_map.shape)
            self.inds[i * k: i * k + k, 0] = inds[0]
            self.inds[i * k: i * k + k, 1] = inds[1]
        
        # for visualisaiton
        sum_attn = self.attention_map.sum(0).numpy()
        mask = np.zeros(sum_attn.shape)
        mask[thresh[:-1].sum(0) > 0] = 1
        sum_attn = sum_attn * mask
        sum_attn = sum_attn / sum_attn.sum()
        thresh[-1] = torch.Tensor(sum_attn)

        # sample num_paths from the chosen pixels.
        prob_sum = sum_attn[self.inds[:,0].astype(np.int), self.inds[:,1].astype(np.int)]
        prob_sum = prob_sum / prob_sum.sum()
        new_inds = []
        for i in range(self.num_stages):
            new_inds.extend(np.random.choice(range(self.inds.shape[0]), size=self.num_paths, replace=False, p=prob_sum))
        self.inds = self.inds[new_inds]
        print("self.inds",self.inds.shape)
    
        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] =  self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] =  self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return thresh

    def set_attention_threshold_map(self):
        assert self.saliency_model in ["dino", "clip"]
        if self.saliency_model == "dino":
            return self.set_inds_dino()
        elif self.saliency_model == "clip":
            return self.set_inds_clip()
        

    def get_attn(self):
        return self.attention_map
    
    def get_thresh(self):
        return self.thresh

    def get_inds(self):
        return self.inds
    
    def get_mask(self):
        return self.mask

    def set_random_noise(self, epoch):
        if epoch % self.args.save_interval == 0:
            self.add_random_noise = False
        else:
            self.add_random_noise = "noise" in self.args.augemntations

class PainterOptimizer:
    def __init__(self, args, renderer):
        self.renderer = renderer
        self.points_lr = args.lr
        self.color_lr = args.color_lr
        self.args = args
        self.optim_color = args.force_sparse

    def init_optimizers(self):
        self.points_optim = torch.optim.Adam(self.renderer.parameters(), lr=self.points_lr)
        if self.optim_color:
            self.color_optim = torch.optim.Adam(self.renderer.set_color_parameters(), lr=self.color_lr)

    def update_lr(self, counter):
        new_lr = utils.get_epoch_lr(counter, self.args)
        for param_group in self.points_optim.param_groups:
            param_group["lr"] = new_lr
    
    def zero_grad_(self):
        self.points_optim.zero_grad()
        if self.optim_color:
            self.color_optim.zero_grad()
    
    def step_(self):
        self.points_optim.step()
        if self.optim_color:
            self.color_optim.step()
    
    def get_lr(self):
        return self.points_optim.param_groups[0]['lr']


class Hook:
    """Attaches to a module and records its activations and gradients."""

    def __init__(self, module: nn.Module):
        self.data = None
        self.hook = module.register_forward_hook(self.save_grad)
        
    def save_grad(self, module, input, output):
        self.data = output
        output.requires_grad_(True)
        output.retain_grad()
        
    def __enter__(self):
        return self
    
    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.hook.remove()
        
    @property
    def activation(self) -> torch.Tensor:
        return self.data
    
    @property
    def gradient(self) -> torch.Tensor:
        return self.data.grad




def interpret(image, texts, model, device):
    images = image.repeat(1, 1, 1, 1)
    res = model.encode_image(images)
    model.zero_grad()
    image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values())
    num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
    R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
    R = R.unsqueeze(0).expand(1, num_tokens, num_tokens)
    cams = [] # there are 12 attention blocks
    for i, blk in enumerate(image_attn_blocks):
        cam = blk.attn_probs.detach() #attn_probs shape is 12, 50, 50
        # each patch is 7x7 so we have 49 pixels + 1 for positional encoding
        cam = cam.reshape(1, -1, cam.shape[-1], cam.shape[-1])
        cam = cam.clamp(min=0)
        cam = cam.clamp(min=0).mean(dim=1) # mean of the 12 something
        cams.append(cam)  
        R = R + torch.bmm(cam, R)
              
    cams_avg = torch.cat(cams) # 12, 50, 50
    cams_avg = cams_avg[:, 0, 1:] # 12, 1, 49
    image_relevance = cams_avg.mean(dim=0).unsqueeze(0)
    image_relevance = image_relevance.reshape(1, 1, 7, 7)
    image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bicubic')
    image_relevance = image_relevance.reshape(224, 224).data.cpu().numpy().astype(np.float32)
    image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
    return image_relevance


# Reference: https://arxiv.org/abs/1610.02391
def gradCAM(
    model: nn.Module,
    input: torch.Tensor,
    target: torch.Tensor,
    layer: nn.Module
) -> torch.Tensor:
    # Zero out any gradients at the input.
    if input.grad is not None:
        input.grad.data.zero_()
        
    # Disable gradient settings.
    requires_grad = {}
    for name, param in model.named_parameters():
        requires_grad[name] = param.requires_grad
        param.requires_grad_(False)
        
    # Attach a hook to the model at the desired layer.
    assert isinstance(layer, nn.Module)
    with Hook(layer) as hook:        
        # Do a forward and backward pass.
        output = model(input)
        output.backward(target)

        grad = hook.gradient.float()
        act = hook.activation.float()
    
        # Global average pool gradient across spatial dimension
        # to obtain importance weights.
        alpha = grad.mean(dim=(2, 3), keepdim=True)
        # Weighted combination of activation maps over channel
        # dimension.
        gradcam = torch.sum(act * alpha, dim=1, keepdim=True)
        # We only want neurons with positive influence so we
        # clamp any negative ones.
        gradcam = torch.clamp(gradcam, min=0)

    # Resize gradcam to input resolution.
    gradcam = F.interpolate(
        gradcam,
        input.shape[2:],
        mode='bicubic',
        align_corners=False)
    
    # Restore gradient settings.
    for name, param in model.named_parameters():
        param.requires_grad_(requires_grad[name])
        
    return gradcam    


class XDoG_(object):
    def __init__(self):
        super(XDoG_, self).__init__()
        self.gamma=0.98
        self.phi=200
        self.eps=-0.1
        self.sigma=0.8
        self.binarize=True
        
    def __call__(self, im, k=10):
        if im.shape[2] == 3:
            im = rgb2gray(im)
        imf1 = gaussian_filter(im, self.sigma)
        imf2 = gaussian_filter(im, self.sigma * k)
        imdiff = imf1 - self.gamma * imf2
        imdiff = (imdiff < self.eps) * 1.0  + (imdiff >= self.eps) * (1.0 + np.tanh(self.phi * imdiff))
        imdiff -= imdiff.min()
        imdiff /= imdiff.max()
        if self.binarize:
            th = threshold_otsu(imdiff)
            imdiff = imdiff >= th
        imdiff = imdiff.astype('float32')
        return imdiff