Spaces:
Runtime error
Runtime error
File size: 12,725 Bytes
3c149ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# sudo cog push r8.im/yael-vinker/clipasso
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
from cog import BasePredictor, Input, Path
import subprocess as sp
import os
import re
import imageio
import matplotlib.pyplot as plt
import numpy as np
import pydiffvg
import torch
from PIL import Image
import multiprocessing as mp
from shutil import copyfile
import argparse
import math
import sys
import time
import traceback
import PIL
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torchvision import models, transforms
from tqdm import tqdm
import config
import sketch_utils as utils
from models.loss import Loss
from models.painter_params import Painter, PainterOptimizer
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.num_iter = 2001
self.save_interval = 100
self.num_sketches = 3
self.use_gpu = True
def predict(
self,
target_image: Path = Input(description="Input image (square, without background)"),
num_strokes: int = Input(description="The number of strokes used to create the sketch, which determines the level of abstraction",default=16),
trials: int = Input(description="It is recommended to use 3 trials to recieve the best sketch, but it might be slower",default=3),
mask_object: int = Input(description="It is recommended to use images without a background, however, if your image contains a background, you can mask it out by using this flag with 1 as an argument",default=0),
fix_scale: int = Input(description="If your image is not squared, it might be cut off, it is recommended to use this flag with 1 as input to automatically fix the scale without cutting the image",default=0),
) -> Path:
self.num_sketches = trials
target_image_name = os.path.basename(str(target_image))
multiprocess = False
abs_path = os.path.abspath(os.getcwd())
target = str(target_image)
assert os.path.isfile(target), f"{target} does not exists!"
test_name = os.path.splitext(target_image_name)[0]
output_dir = f"{abs_path}/output_sketches/{test_name}/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("=" * 50)
print(f"Processing [{target_image_name}] ...")
print(f"Results will be saved to \n[{output_dir}] ...")
print("=" * 50)
if not torch.cuda.is_available():
self.use_gpu = False
print("CUDA is not configured with GPU, running with CPU instead.")
print("Note that this will be very slow, it is recommended to use colab.")
print(f"GPU: {self.use_gpu}")
seeds = list(range(0, self.num_sketches * 1000, 1000))
losses_all = {}
for seed in seeds:
wandb_name = f"{test_name}_{num_strokes}strokes_seed{seed}"
sp.run(["python", "config.py", target,
"--num_paths", str(num_strokes),
"--output_dir", output_dir,
"--wandb_name", wandb_name,
"--num_iter", str(self.num_iter),
"--save_interval", str(self.save_interval),
"--seed", str(seed),
"--use_gpu", str(int(self.use_gpu)),
"--fix_scale", str(fix_scale),
"--mask_object", str(mask_object),
"--mask_object_attention", str(
mask_object),
"--display_logs", str(int(0))])
config_init = np.load(f"{output_dir}/{wandb_name}/config_init.npy", allow_pickle=True)[()]
args = Args(config_init)
args.cog_display = True
final_config = vars(args)
try:
configs_to_save = main(args)
except BaseException as err:
print(f"Unexpected error occurred:\n {err}")
print(traceback.format_exc())
sys.exit(1)
for k in configs_to_save.keys():
final_config[k] = configs_to_save[k]
np.save(f"{args.output_dir}/config.npy", final_config)
if args.use_wandb:
wandb.finish()
config = np.load(f"{output_dir}/{wandb_name}/config.npy",
allow_pickle=True)[()]
loss_eval = np.array(config['loss_eval'])
inds = np.argsort(loss_eval)
losses_all[wandb_name] = loss_eval[inds][0]
# return Path(f"{output_dir}/{wandb_name}/best_iter.svg")
sorted_final = dict(sorted(losses_all.items(), key=lambda item: item[1]))
copyfile(f"{output_dir}/{list(sorted_final.keys())[0]}/best_iter.svg",
f"{output_dir}/{list(sorted_final.keys())[0]}_best.svg")
target_path = f"{abs_path}/target_images/{target_image_name}"
svg_files = os.listdir(output_dir)
svg_files = [f for f in svg_files if "best.svg" in f]
svg_output_path = f"{output_dir}/{svg_files[0]}"
sketch_res = read_svg(svg_output_path, multiply=True).cpu().numpy()
sketch_res = Image.fromarray((sketch_res * 255).astype('uint8'), 'RGB')
sketch_res.save(f"{abs_path}/output_sketches/sketch.png")
return Path(svg_output_path)
class Args():
def __init__(self, config):
for k in config.keys():
setattr(self, k, config[k])
def load_renderer(args, target_im=None, mask=None):
renderer = Painter(num_strokes=args.num_paths, args=args,
num_segments=args.num_segments,
imsize=args.image_scale,
device=args.device,
target_im=target_im,
mask=mask)
renderer = renderer.to(args.device)
return renderer
def get_target(args):
target = Image.open(args.target)
if target.mode == "RGBA":
# Create a white rgba background
new_image = Image.new("RGBA", target.size, "WHITE")
# Paste the image on the background.
new_image.paste(target, (0, 0), target)
target = new_image
target = target.convert("RGB")
masked_im, mask = utils.get_mask_u2net(args, target)
if args.mask_object:
target = masked_im
if args.fix_scale:
target = utils.fix_image_scale(target)
transforms_ = []
if target.size[0] != target.size[1]:
transforms_.append(transforms.Resize(
(args.image_scale, args.image_scale), interpolation=PIL.Image.BICUBIC))
else:
transforms_.append(transforms.Resize(
args.image_scale, interpolation=PIL.Image.BICUBIC))
transforms_.append(transforms.CenterCrop(args.image_scale))
transforms_.append(transforms.ToTensor())
data_transforms = transforms.Compose(transforms_)
target_ = data_transforms(target).unsqueeze(0).to(args.device)
return target_, mask
def main(args):
loss_func = Loss(args)
inputs, mask = get_target(args)
utils.log_input(args.use_wandb, 0, inputs, args.output_dir)
renderer = load_renderer(args, inputs, mask)
optimizer = PainterOptimizer(args, renderer)
counter = 0
configs_to_save = {"loss_eval": []}
best_loss, best_fc_loss = 100, 100
best_iter, best_iter_fc = 0, 0
min_delta = 1e-5
terminate = False
renderer.set_random_noise(0)
img = renderer.init_image(stage=0)
optimizer.init_optimizers()
for epoch in tqdm(range(args.num_iter)):
renderer.set_random_noise(epoch)
if args.lr_scheduler:
optimizer.update_lr(counter)
start = time.time()
optimizer.zero_grad_()
sketches = renderer.get_image().to(args.device)
losses_dict = loss_func(sketches, inputs.detach(
), renderer.get_color_parameters(), renderer, counter, optimizer)
loss = sum(list(losses_dict.values()))
loss.backward()
optimizer.step_()
if epoch % args.save_interval == 0:
utils.plot_batch(inputs, sketches, f"{args.output_dir}/jpg_logs", counter,
use_wandb=args.use_wandb, title=f"iter{epoch}.jpg")
renderer.save_svg(
f"{args.output_dir}/svg_logs", f"svg_iter{epoch}")
# if args.cog_display:
# yield Path(f"{args.output_dir}/svg_logs/svg_iter{epoch}.svg")
if epoch % args.eval_interval == 0:
with torch.no_grad():
losses_dict_eval = loss_func(sketches, inputs, renderer.get_color_parameters(
), renderer.get_points_parans(), counter, optimizer, mode="eval")
loss_eval = sum(list(losses_dict_eval.values()))
configs_to_save["loss_eval"].append(loss_eval.item())
for k in losses_dict_eval.keys():
if k not in configs_to_save.keys():
configs_to_save[k] = []
configs_to_save[k].append(losses_dict_eval[k].item())
if args.clip_fc_loss_weight:
if losses_dict_eval["fc"].item() < best_fc_loss:
best_fc_loss = losses_dict_eval["fc"].item(
) / args.clip_fc_loss_weight
best_iter_fc = epoch
# print(
# f"eval iter[{epoch}/{args.num_iter}] loss[{loss.item()}] time[{time.time() - start}]")
cur_delta = loss_eval.item() - best_loss
if abs(cur_delta) > min_delta:
if cur_delta < 0:
best_loss = loss_eval.item()
best_iter = epoch
terminate = False
utils.plot_batch(
inputs, sketches, args.output_dir, counter, use_wandb=args.use_wandb, title="best_iter.jpg")
renderer.save_svg(args.output_dir, "best_iter")
if args.use_wandb:
wandb.run.summary["best_loss"] = best_loss
wandb.run.summary["best_loss_fc"] = best_fc_loss
wandb_dict = {"delta": cur_delta,
"loss_eval": loss_eval.item()}
for k in losses_dict_eval.keys():
wandb_dict[k + "_eval"] = losses_dict_eval[k].item()
wandb.log(wandb_dict, step=counter)
if abs(cur_delta) <= min_delta:
if terminate:
break
terminate = True
if counter == 0 and args.attention_init:
utils.plot_atten(renderer.get_attn(), renderer.get_thresh(), inputs, renderer.get_inds(),
args.use_wandb, "{}/{}.jpg".format(
args.output_dir, "attention_map"),
args.saliency_model, args.display_logs)
if args.use_wandb:
wandb_dict = {"loss": loss.item(), "lr": optimizer.get_lr()}
for k in losses_dict.keys():
wandb_dict[k] = losses_dict[k].item()
wandb.log(wandb_dict, step=counter)
counter += 1
renderer.save_svg(args.output_dir, "final_svg")
path_svg = os.path.join(args.output_dir, "best_iter.svg")
utils.log_sketch_summary_final(
path_svg, args.use_wandb, args.device, best_iter, best_loss, "best total")
return configs_to_save
def read_svg(path_svg, multiply=False):
device = torch.device("cuda" if (
torch.cuda.is_available() and torch.cuda.device_count() > 0) else "cpu")
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
path_svg)
if multiply:
canvas_width *= 2
canvas_height *= 2
for path in shapes:
path.points *= 2
path.stroke_width *= 2
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
canvas_width, canvas_height, shapes, shape_groups)
img = _render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3,
device=device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
return img
|