Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
import transformers | |
from transformers import ( | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
) | |
from utils import preprocess | |
device = 'cpu' | |
model_dir = "nealcly/detection-longformer" | |
# load the Longformer detector | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
model = AutoModelForSequenceClassification.from_pretrained(model_dir).to(device) | |
def detect(input_text,th=-3.08583984375): | |
if len(input_text.split()) < 30: | |
return 'It is not reliable to detect text with less than 30 words.' | |
label2decisions = { | |
0: "machine-generated", | |
1: "human-written", | |
} | |
tokenize_input = tokenizer(input_text) | |
tensor_input = torch.tensor([tokenize_input["input_ids"]]).to(device) | |
outputs = model(tensor_input) | |
is_machine = -outputs.logits[0][0].item() | |
if is_machine < th: | |
decision = 0 | |
else: | |
decision = 1 | |
return label2decisions[decision] | |
description_e = """ | |
This is a demo on Github project π [Deepfake Text Detection in the Wild](https://github.com/yafuly/DeepfakeTextDetect). | |
π― Input the text to be detected, and click ''submit''' to get the detection result, either human-written or machine-generated. | |
βοΈ It takes about 6~ seconds to generate detection results. | |
π Check out our [Model Card π](https://huggingface.co/nealcly/detection-longformer) | |
""" | |
iface = gr.Interface(fn=detect, inputs="text", outputs="text", description=description_e) | |
iface.launch() |