yaful's picture
Update app.py
6e4d943
raw
history blame
1.55 kB
import gradio as gr
import torch
import os
import transformers
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
from utils import preprocess
device = 'cpu'
model_dir = "nealcly/detection-longformer"
# load the Longformer detector
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir).to(device)
def detect(input_text,th=-3.08583984375):
if len(input_text.split()) < 30:
return 'It is not reliable to detect text with less than 30 words.'
label2decisions = {
0: "machine-generated",
1: "human-written",
}
tokenize_input = tokenizer(input_text)
tensor_input = torch.tensor([tokenize_input["input_ids"]]).to(device)
outputs = model(tensor_input)
is_machine = -outputs.logits[0][0].item()
if is_machine < th:
decision = 0
else:
decision = 1
return label2decisions[decision]
description_e = """
This is a demo on Github project πŸƒ [Deepfake Text Detection in the Wild](https://github.com/yafuly/DeepfakeTextDetect).
🎯 Input the text to be detected, and click ''submit''' to get the detection result, either human-written or machine-generated.
βŒ›οΈ It takes about 6~ seconds to generate detection results.
🏠 Check out our [Model Card πŸƒ](https://huggingface.co/nealcly/detection-longformer)
"""
iface = gr.Interface(fn=detect, inputs="text", outputs="text", description=description_e)
iface.launch()