Spaces:
Build error
Build error
File size: 7,404 Bytes
d5f9f96 73fc793 10895fa d5f9f96 3a5f13b d5f9f96 3a5f13b d5f9f96 3a5f13b d5f9f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import codecs
from ast import literal_eval
from datetime import datetime
from rwkvstic.load import RWKV
from rwkvstic.agnostic.backends import TORCH, TORCH_QUANT, TORCH_STREAM
import torch
import gc
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def to_md(text):
return text.replace("\n", "<br />")
def get_model():
model = None
model = RWKV(
"https://huggingface.co/BlinkDL/rwkv-4-pile-1b5/resolve/main/RWKV-4-Pile-1B5-Instruct-test1-20230124.pth",
"pytorch(cpu/gpu)",
runtimedtype=torch.float32,
useGPU=torch.cuda.is_available(),
dtype=torch.float32
)
return model
model = None
def infer(
prompt,
mode = "generative",
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
stop="<|endoftext|>",
seed=42,
):
global model
if model == None:
gc.collect()
if (DEVICE == "cuda"):
torch.cuda.empty_cache()
model = get_model()
max_new_tokens = int(max_new_tokens)
temperature = float(temperature)
top_p = float(top_p)
stop = [x.strip(' ') for x in stop.split(',')]
seed = seed
assert 1 <= max_new_tokens <= 384
assert 0.0 <= temperature <= 1.0
assert 0.0 <= top_p <= 1.0
if temperature == 0.0:
temperature = 0.01
if prompt == "":
prompt = " "
if (mode == "generative"):
# Clear model state for generative mode
model.resetState()
else: # Q/A
model.resetState()
prompt = f"Expert Questions & Helpful Answers\nAsk Research Experts\nQuestion:\n{prompt}\n\nFull Answer:"
print(f"PROMPT ({datetime.now()}):\n-------\n{prompt}")
print(f"OUTPUT ({datetime.now()}):\n-------\n")
# Load prompt
model.loadContext(newctx=prompt)
generated_text = ""
done = False
with torch.no_grad():
for _ in range(max_new_tokens):
char = model.forward(stopStrings=stop,temp=temperature,top_p_usual=top_p)["output"]
print(char, end='', flush=True)
generated_text += char
generated_text = generated_text.lstrip("\n ")
for stop_word in stop:
stop_word = codecs.getdecoder("unicode_escape")(stop_word)[0]
if stop_word != '' and stop_word in generated_text:
done = True
break
yield generated_text
if done:
print("<stopped>\n")
break
print(f"{generated_text}")
for stop_word in stop:
stop_word = codecs.getdecoder("unicode_escape")(stop_word)[0]
if stop_word != '' and stop_word in generated_text:
generated_text = generated_text[:generated_text.find(stop_word)]
gc.collect()
yield generated_text
def chat(
prompt,
history,
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
stop="<|endoftext|>",
seed=42,
):
global model
history = history or []
if model == None:
gc.collect()
if (DEVICE == "cuda"):
torch.cuda.empty_cache()
model = get_model()
max_new_tokens = int(max_new_tokens)
temperature = float(temperature)
top_p = float(top_p)
stop = [x.strip(' ') for x in stop.split(',')]
seed = seed
assert 1 <= max_new_tokens <= 384
assert 0.0 <= temperature <= 1.0
assert 0.0 <= top_p <= 1.0
if temperature == 0.0:
temperature = 0.01
if prompt == "":
prompt = " "
print(f"PROMPT ({datetime.now()}):\n-------\n{prompt}")
print(f"OUTPUT ({datetime.now()}):\n-------\n")
# Load prompt
model.loadContext(newctx=prompt)
generated_text = ""
done = False
generated_text = model.forward(number=max_new_tokens, stopStrings=stop,temp=temperature,top_p_usual=top_p)["output"]
generated_text = generated_text.lstrip("\n ")
print(f"{generated_text}")
for stop_word in stop:
stop_word = codecs.getdecoder("unicode_escape")(stop_word)[0]
if stop_word != '' and stop_word in generated_text:
generated_text = generated_text[:generated_text.find(stop_word)]
gc.collect()
history.append((prompt, generated_text))
return history,history
examples = [
[
# Question Answering
'''What is the capital of Germany?''',"Q/A", 25, 0.2, 1.0, "<|endoftext|>"],
[
# Question Answering
'''Are humans good or bad?''',"Q/A", 150, 0.8, 0.8, "<|endoftext|>"],
[
# Chatbot
'''This is a conversation two AI large language models named Alex and Fritz. They are exploring each other's capabilities, and trying to ask interesting questions of one another to explore the limits of each others AI.
Conversation:
Alex: Good morning, Fritz!
Fritz:''', "generative", 200, 0.9, 0.9, "\\n\\n,<|endoftext|>"],
[
# Generate List
'''Q. Give me list of fiction books.
1. Harry Potter
2. Lord of the Rings
3. Game of Thrones
Q. Give me a list of vegetables.
1. Broccoli
2. Celery
3. Tomatoes
Q. Give me a list of car manufacturers.''', "generative", 80, 0.2, 1.0, "\\n\\n,<|endoftext|>"],
[
# Natural Language Interface
'''You are the writing assistant for Stephen King. You have worked in the fiction/horror genre for 30 years. You are a Pulitzer Prize-winning author, and now you are tasked with developing a skeletal outline for his newest novel, set to be completed in the spring of 2024. Create a title and brief description for the first 5 chapters of this work.\n\nTitle:''',"generative", 250, 0.85, 0.85, "<|endoftext|>"]
]
iface = gr.Interface(
fn=infer,
description='''<p><a href='https://github.com/BlinkDL/RWKV-LM'>RWKV Language Model</a> - RNN With Transformer-level LLM Performance</p>
<p>Big thank you to <a href='https://www.rftcapital.com'>RFT Capital</a> for providing compute capability for our experiments.</p>''',
allow_flagging="never",
inputs=[
gr.Textbox(lines=20, label="Prompt"), # prompt
gr.Radio(["generative","Q/A"], value="generative", label="Choose Mode"),
gr.Slider(1, 384, value=20), # max_tokens
gr.Slider(0.0, 1.0, value=0.2), # temperature
gr.Slider(0.0, 1.0, value=0.9), # top_p
gr.Textbox(lines=1, value="<|endoftext|>") # stop
],
outputs=gr.Textbox(lines=25),
examples=examples,
cache_examples=False,
).queue()
chatiface = gr.Interface(
fn=chat,
description='''<p><a href='https://github.com/BlinkDL/RWKV-LM'>RWKV Language Model</a> - RNN With Transformer-level LLM Performance</p>
<p>Big thank you to <a href='https://www.rftcapital.com'>RFT Capital</a> for providing compute capability for our experiments.</p>''',
allow_flagging="never",
inputs=[
gr.Textbox(lines=5, label="Message"), # prompt
"state",
gr.Slider(1, 384, value=20), # max_tokens
gr.Slider(0.0, 1.0, value=0.2), # temperature
gr.Slider(0.0, 1.0, value=0.9), # top_p
gr.Textbox(lines=1, value="<|endoftext|>,\\n") # stop
],
outputs=[gr.Chatbot(color_map=("green", "pink")),"state"],
).queue()
demo = gr.TabbedInterface(
[iface,chatiface],["Generative","Chatbot"],
title="RWKV-4 (1.5b Instruct)",
)
demo.queue()
demo.launch(share=False)
|