Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,345 +1,74 @@
|
|
1 |
-
import subprocess
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
hidden_df: pd.DataFrame,
|
66 |
-
columns: list,
|
67 |
-
type_query: list,
|
68 |
-
precision_query: str,
|
69 |
-
size_query: list,
|
70 |
-
show_deleted: bool,
|
71 |
-
query: str,
|
72 |
-
):
|
73 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
-
filtered_df = filter_queries(query, filtered_df)
|
75 |
-
df = select_columns(filtered_df, columns)
|
76 |
-
return df
|
77 |
-
|
78 |
-
|
79 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
80 |
-
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
81 |
-
|
82 |
-
|
83 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
84 |
-
always_here_cols = [
|
85 |
-
AutoEvalColumn.model_type_symbol.name,
|
86 |
-
AutoEvalColumn.model.name,
|
87 |
-
]
|
88 |
-
# We use COLS to maintain sorting
|
89 |
-
filtered_df = df[
|
90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
-
]
|
92 |
-
return filtered_df
|
93 |
-
|
94 |
-
|
95 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
96 |
-
final_df = []
|
97 |
-
if query != "":
|
98 |
-
queries = [q.strip() for q in query.split(";")]
|
99 |
-
for _q in queries:
|
100 |
-
_q = _q.strip()
|
101 |
-
if _q != "":
|
102 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
103 |
-
if len(temp_filtered_df) > 0:
|
104 |
-
final_df.append(temp_filtered_df)
|
105 |
-
if len(final_df) > 0:
|
106 |
-
filtered_df = pd.concat(final_df)
|
107 |
-
filtered_df = filtered_df.drop_duplicates(
|
108 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
109 |
-
)
|
110 |
-
|
111 |
-
return filtered_df
|
112 |
-
|
113 |
-
|
114 |
-
def filter_models(
|
115 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
116 |
-
) -> pd.DataFrame:
|
117 |
-
# Show all models
|
118 |
-
if show_deleted:
|
119 |
-
filtered_df = df
|
120 |
-
else: # Show only still on the hub models
|
121 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
122 |
-
|
123 |
-
type_emoji = [t[0] for t in type_query]
|
124 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
125 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
126 |
-
|
127 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
128 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
129 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
130 |
-
filtered_df = filtered_df.loc[mask]
|
131 |
-
|
132 |
-
return filtered_df
|
133 |
-
|
134 |
-
|
135 |
-
demo = gr.Blocks(css=custom_css)
|
136 |
-
with demo:
|
137 |
-
gr.HTML(TITLE)
|
138 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
139 |
-
|
140 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
141 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
142 |
-
with gr.Row():
|
143 |
-
with gr.Column():
|
144 |
-
with gr.Row():
|
145 |
-
search_bar = gr.Textbox(
|
146 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
147 |
-
show_label=False,
|
148 |
-
elem_id="search-bar",
|
149 |
-
)
|
150 |
-
with gr.Row():
|
151 |
-
shown_columns = gr.CheckboxGroup(
|
152 |
-
choices=[
|
153 |
-
c.name
|
154 |
-
for c in fields(AutoEvalColumn)
|
155 |
-
if not c.hidden and not c.never_hidden
|
156 |
-
],
|
157 |
-
value=[
|
158 |
-
c.name
|
159 |
-
for c in fields(AutoEvalColumn)
|
160 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
161 |
-
],
|
162 |
-
label="Select columns to show",
|
163 |
-
elem_id="column-select",
|
164 |
-
interactive=True,
|
165 |
-
)
|
166 |
-
with gr.Row():
|
167 |
-
deleted_models_visibility = gr.Checkbox(
|
168 |
-
value=False, label="Show gated/private/deleted models", interactive=True
|
169 |
-
)
|
170 |
-
with gr.Column(min_width=320):
|
171 |
-
#with gr.Box(elem_id="box-filter"):
|
172 |
-
filter_columns_type = gr.CheckboxGroup(
|
173 |
-
label="Model types",
|
174 |
-
choices=[t.to_str() for t in ModelType],
|
175 |
-
value=[t.to_str() for t in ModelType],
|
176 |
-
interactive=True,
|
177 |
-
elem_id="filter-columns-type",
|
178 |
-
)
|
179 |
-
filter_columns_precision = gr.CheckboxGroup(
|
180 |
-
label="Precision",
|
181 |
-
choices=[i.value.name for i in Precision],
|
182 |
-
value=[i.value.name for i in Precision],
|
183 |
-
interactive=True,
|
184 |
-
elem_id="filter-columns-precision",
|
185 |
-
)
|
186 |
-
filter_columns_size = gr.CheckboxGroup(
|
187 |
-
label="Model sizes (in billions of parameters)",
|
188 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
189 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
190 |
-
interactive=True,
|
191 |
-
elem_id="filter-columns-size",
|
192 |
-
)
|
193 |
-
|
194 |
-
leaderboard_table = gr.components.Dataframe(
|
195 |
-
value=leaderboard_df[
|
196 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
-
+ shown_columns.value
|
198 |
-
],
|
199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
-
datatype=TYPES,
|
201 |
-
elem_id="leaderboard-table",
|
202 |
-
interactive=False,
|
203 |
-
visible=True,
|
204 |
-
)
|
205 |
-
|
206 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
207 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
208 |
-
value=original_df[COLS],
|
209 |
-
headers=COLS,
|
210 |
-
datatype=TYPES,
|
211 |
-
visible=False,
|
212 |
-
)
|
213 |
-
search_bar.submit(
|
214 |
-
update_table,
|
215 |
-
[
|
216 |
-
hidden_leaderboard_table_for_search,
|
217 |
-
shown_columns,
|
218 |
-
filter_columns_type,
|
219 |
-
filter_columns_precision,
|
220 |
-
filter_columns_size,
|
221 |
-
deleted_models_visibility,
|
222 |
-
search_bar,
|
223 |
-
],
|
224 |
-
leaderboard_table,
|
225 |
-
)
|
226 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
227 |
-
selector.change(
|
228 |
-
update_table,
|
229 |
-
[
|
230 |
-
hidden_leaderboard_table_for_search,
|
231 |
-
shown_columns,
|
232 |
-
filter_columns_type,
|
233 |
-
filter_columns_precision,
|
234 |
-
filter_columns_size,
|
235 |
-
deleted_models_visibility,
|
236 |
-
search_bar,
|
237 |
-
],
|
238 |
-
leaderboard_table,
|
239 |
-
queue=True,
|
240 |
-
)
|
241 |
-
|
242 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
243 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
244 |
-
|
245 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
246 |
-
with gr.Column():
|
247 |
-
with gr.Row():
|
248 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
249 |
-
|
250 |
-
with gr.Column():
|
251 |
-
with gr.Accordion(
|
252 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
253 |
-
open=False,
|
254 |
-
):
|
255 |
-
with gr.Row():
|
256 |
-
finished_eval_table = gr.components.Dataframe(
|
257 |
-
value=finished_eval_queue_df,
|
258 |
-
headers=EVAL_COLS,
|
259 |
-
datatype=EVAL_TYPES,
|
260 |
-
row_count=5,
|
261 |
-
)
|
262 |
-
with gr.Accordion(
|
263 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
264 |
-
open=False,
|
265 |
-
):
|
266 |
-
with gr.Row():
|
267 |
-
running_eval_table = gr.components.Dataframe(
|
268 |
-
value=running_eval_queue_df,
|
269 |
-
headers=EVAL_COLS,
|
270 |
-
datatype=EVAL_TYPES,
|
271 |
-
row_count=5,
|
272 |
-
)
|
273 |
-
|
274 |
-
with gr.Accordion(
|
275 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
276 |
-
open=False,
|
277 |
-
):
|
278 |
-
with gr.Row():
|
279 |
-
pending_eval_table = gr.components.Dataframe(
|
280 |
-
value=pending_eval_queue_df,
|
281 |
-
headers=EVAL_COLS,
|
282 |
-
datatype=EVAL_TYPES,
|
283 |
-
row_count=5,
|
284 |
-
)
|
285 |
-
with gr.Row():
|
286 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
287 |
-
|
288 |
-
with gr.Row():
|
289 |
-
with gr.Column():
|
290 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
291 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
292 |
-
model_type = gr.Dropdown(
|
293 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
294 |
-
label="Model type",
|
295 |
-
multiselect=False,
|
296 |
-
value=None,
|
297 |
-
interactive=True,
|
298 |
-
)
|
299 |
-
|
300 |
-
with gr.Column():
|
301 |
-
precision = gr.Dropdown(
|
302 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
303 |
-
label="Precision",
|
304 |
-
multiselect=False,
|
305 |
-
value="float16",
|
306 |
-
interactive=True,
|
307 |
-
)
|
308 |
-
weight_type = gr.Dropdown(
|
309 |
-
choices=[i.value.name for i in WeightType],
|
310 |
-
label="Weights type",
|
311 |
-
multiselect=False,
|
312 |
-
value="Original",
|
313 |
-
interactive=True,
|
314 |
-
)
|
315 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
316 |
-
|
317 |
-
submit_button = gr.Button("Submit Eval")
|
318 |
-
submission_result = gr.Markdown()
|
319 |
-
submit_button.click(
|
320 |
-
add_new_eval,
|
321 |
-
[
|
322 |
-
model_name_textbox,
|
323 |
-
base_model_name_textbox,
|
324 |
-
revision_name_textbox,
|
325 |
-
precision,
|
326 |
-
weight_type,
|
327 |
-
model_type,
|
328 |
-
],
|
329 |
-
submission_result,
|
330 |
-
)
|
331 |
-
|
332 |
with gr.Row():
|
333 |
-
with gr.Accordion(
|
334 |
citation_button = gr.Textbox(
|
335 |
value=CITATION_BUTTON_TEXT,
|
336 |
label=CITATION_BUTTON_LABEL,
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
)
|
341 |
-
|
342 |
-
scheduler = BackgroundScheduler()
|
343 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
-
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
|
3 |
+
import config
|
4 |
+
from pathlib import Path
|
5 |
import pandas as pd
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
abs_path = Path(__file__).parent
|
9 |
+
|
10 |
+
|
11 |
+
df = pd.read_json(str(abs_path / "leader_board.json"))
|
12 |
+
# Randomly set True/ False for the "MOE" column
|
13 |
+
#
|
14 |
+
# print(df.info())
|
15 |
+
# print(df.columns)
|
16 |
+
# print(df.head(1))
|
17 |
+
head_content = """
|
18 |
+
# 🏅 BlinkCode Leaderboard
|
19 |
+
### Welcome to the BlinkCode Leaderboard! On this leaderboard we share the evaluation results of MLLMs obtained by the [OpenSource Framework](github.link).
|
20 |
+
|
21 |
+
### Currently, BlinkCode Leaderboard covers <model num> different VLMs (including GPT-4v, Gemini, QwenVLMAX, LLaVA, etc.) and 9 different task.
|
22 |
+
## Main Evaluation Results
|
23 |
+
- Metrics:
|
24 |
+
- Avg Score: The average score on all task (normalized to 0 - 100, the higher the better).
|
25 |
+
- The scores in the 5 tasks (HumanEval-V, MBPP-V, GSM8K-V, MATH-V, VP) represent the percentage of accuracy.
|
26 |
+
- The scores in the image reconstruction tasks (Matplotlib, SVG, TikZ, Webpage) represent the similarity between the reconstructed images and the original images (normalized to 0 - 100, the higher the better).
|
27 |
+
- By default, we present the unrefined evaluation results,, sorted by the descending order of Avg Score⬆️.
|
28 |
+
- The ⭐ symbol indicates results that have undergone two rounds of refinement.
|
29 |
+
|
30 |
+
|
31 |
+
This leaderboard was last updated: <nowtime>.
|
32 |
+
"""
|
33 |
+
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
|
34 |
+
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
|
35 |
+
author={OpenCompass Contributors},
|
36 |
+
howpublished = {\url{https://github.com/open-compass/opencompass}},
|
37 |
+
year={2023}
|
38 |
+
}"""
|
39 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
40 |
+
unique_models_count = df["Model"].nunique()
|
41 |
+
# print(unique_models_count)
|
42 |
+
nowtime = datetime.now()
|
43 |
+
formatted_time = nowtime.strftime("%y.%m.%d %H:%M:%S")
|
44 |
+
head_content = head_content.replace("<nowtime>", formatted_time).replace('<model num>', str(unique_models_count))
|
45 |
+
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown(head_content)
|
48 |
+
with gr.Tabs():
|
49 |
+
Leaderboard(
|
50 |
+
value=df,
|
51 |
+
select_columns=SelectColumns(
|
52 |
+
default_selection=config.ON_LOAD_COLUMNS,
|
53 |
+
cant_deselect=["Rank", "Model"],
|
54 |
+
label="Select Columns to Display:",
|
55 |
+
),
|
56 |
+
search_columns=["Model", "Model Type"],
|
57 |
+
hide_columns=["Model Size", "Model Type", "Supports multiple images"],
|
58 |
+
filter_columns=[
|
59 |
+
"Model Size",
|
60 |
+
"Model Type",
|
61 |
+
"Supports multiple images"
|
62 |
+
# ColumnFilter("Params (B)", default=[0, 20]),
|
63 |
+
],
|
64 |
+
datatype=config.TYPES,
|
65 |
+
column_widths=["5%", "15%"],
|
66 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
with gr.Row():
|
68 |
+
with gr.Accordion('Citation', open=False):
|
69 |
citation_button = gr.Textbox(
|
70 |
value=CITATION_BUTTON_TEXT,
|
71 |
label=CITATION_BUTTON_LABEL,
|
72 |
+
elem_id='citation-button')
|
73 |
+
if __name__ == "__main__":
|
74 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|