File size: 4,979 Bytes
b1ea0d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import asyncio
import logging
import os
from typing import Any
from aiohttp import ClientSession
from tqdm.asyncio import tqdm_asyncio
import random
from time import sleep
import sys
import aiolimiter

import openai
from openai import AsyncOpenAI, OpenAIError


def prepare_message(SYSTEM_INPUT, USER_INPUT):
    cur_message = [
        {
            "role": "system",
            "content": SYSTEM_INPUT
        },
        {
            "role": "user",
            "content": USER_INPUT,
        }
    ]
    return cur_message

def prepare_remove_message(USER_INPUT):
    cur_message = [
        {
            "role": "system",
            "content": "Remove sentences about experimental design and results: "
        },
        {
            "role": "user",
            "content": USER_INPUT,
        }
    ]
    return cur_message

def prepare_generation_input(title, abstract, sections, filepath):
    with open(filepath, 'r', encoding='utf-8') as file:
        SYSTEM_INPUT=file.read()
    return SYSTEM_INPUT,f"Paper title: {title}\n\nPaper abstract: {abstract}\n\nPaper Sections: {sections}"

def prepare_remove_input(title, abstract, introduction, filepath):
    with open(filepath,'r',encoding='utf-8') as file:
        SYSTEM_INPUT=file.read()
        print(SYSTEM_INPUT)
    return SYSTEM_INPUT,f"Paper title: {title}\n\nPaper abstract: {abstract}\n\nIntroduction: {introduction}\n\n"


async def _throttled_openai_chat_completion_acreate(

    client: AsyncOpenAI,

    model: str,

    messages,

    temperature: float,

    max_tokens: int,

    top_p: float,

    limiter: aiolimiter.AsyncLimiter,

    response_format: dict = {},

):
    async with limiter:
        for _ in range(10):
            try:
                if response_format["type"] == "text":
                    return await client.chat.completions.create(
                        model=model,
                        messages=messages,
                        temperature=temperature,
                        max_tokens=max_tokens,
                        top_p=top_p,
                    )
                else: 
                    return await client.chat.completions.create(
                        model=model,
                        messages=messages,
                        temperature=temperature,
                        max_tokens=max_tokens,
                        top_p=top_p,
                        response_format=response_format,
                    )
            except openai.BadRequestError as e:
                print(e)
                return None
            except OpenAIError as e:
                print(e)
                sleep(random.randint(5, 10))
        return None


async def generate_from_openai_chat_completion(

    client,

    messages,

    engine_name: str,

    temperature: float = 1.0,

    max_tokens: int = 512,

    top_p: float = 1.0,

    requests_per_minute: int = 100,

    response_format: dict = {"type":"text"},

):
    """Generate from OpenAI Chat Completion API.

    Args:

        messages: List of messages to proceed.

        engine_name: Engine name to use, see https://platform.openai.com/docs/models

        temperature: Temperature to use.

        max_tokens: Maximum number of tokens to generate.

        top_p: Top p to use.

        requests_per_minute: Number of requests per minute to allow.

    Returns:

        List of generated responses.

    """    
    limiter = aiolimiter.AsyncLimiter(requests_per_minute)
    
    async_responses = [
        _throttled_openai_chat_completion_acreate(
            client,
            model=engine_name,
            messages=message,
            temperature=temperature,
            max_tokens=max_tokens,
            top_p=top_p,
            limiter=limiter,
            response_format=response_format,
        )
        for message in messages
    ]
    
    responses = await tqdm_asyncio.gather(*async_responses, file=sys.stdout)
    
    outputs = []
    for response in responses:
        if response:
            outputs.append(response.choices[0].message.content)
        else:
            outputs.append("Invalid Message")
    return outputs


# Example usage
if __name__ == "__main__":
    os.environ["OPENAI_API_KEY"] = "xxx" # Set your OpenAI API key here
    
    client = AsyncOpenAI()
    AsyncOpenAI.api_key = os.getenv('OPENAI_API_KEY')
    
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the purpose of life? Output result in json format."},
    ]
    responses = asyncio.run(
        generate_from_openai_chat_completion(
            client,
            messages=[messages]*50, 
            engine_name="gpt-3.5-turbo-0125",
            max_tokens=256,
            response_format={"type":"json_object"},
        )
    )
    print(responses)