Upload 3 files
Browse files- README.md +12 -14
- app.py +545 -0
- requirements.txt +11 -0
README.md
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title: LimitGen
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: LimitGen Demo
|
3 |
+
emoji: 💬
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: demo
|
11 |
+
---
|
12 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
app.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from io import BytesIO
|
5 |
+
import datetime
|
6 |
+
import time
|
7 |
+
import openai, tenacity
|
8 |
+
import argparse
|
9 |
+
import configparser
|
10 |
+
import json
|
11 |
+
import fitz
|
12 |
+
import PyPDF2
|
13 |
+
import gradio
|
14 |
+
import sys
|
15 |
+
from pathlib import Path
|
16 |
+
utils_dir = Path(__file__).parent / 'utils'
|
17 |
+
sys.path.append(str(utils_dir))
|
18 |
+
from openai_utils import *
|
19 |
+
import base64
|
20 |
+
from pdf2image import convert_from_bytes
|
21 |
+
import requests
|
22 |
+
PRIVATE_API_KEY = os.getenv('PRIVATE_API_KEY')
|
23 |
+
PRIVATE_API_BASE = os.getenv('PRIVATE_API_BASE')
|
24 |
+
|
25 |
+
|
26 |
+
def insert_sentence(text, sentence, interval):
|
27 |
+
lines = text.split('\n')
|
28 |
+
new_lines = []
|
29 |
+
|
30 |
+
for line in lines:
|
31 |
+
words = line.split()
|
32 |
+
separator = ' '
|
33 |
+
|
34 |
+
new_words = []
|
35 |
+
count = 0
|
36 |
+
|
37 |
+
for word in words:
|
38 |
+
new_words.append(word)
|
39 |
+
count += 1
|
40 |
+
|
41 |
+
if count % interval == 0:
|
42 |
+
new_words.append(sentence)
|
43 |
+
|
44 |
+
new_lines.append(separator.join(new_words))
|
45 |
+
|
46 |
+
return '\n'.join(new_lines)
|
47 |
+
|
48 |
+
def search_paper(query):
|
49 |
+
SEMANTIC_SCHOLAR_API_URL = "https://api.semanticscholar.org/graph/v1/paper/"
|
50 |
+
url = f"{SEMANTIC_SCHOLAR_API_URL}search?query={query}&limit=3&fields=url,title,abstract&fieldsOfStudy=Computer Science"
|
51 |
+
|
52 |
+
response = requests.get(url)
|
53 |
+
while response.status_code != 200:
|
54 |
+
time.sleep(1)
|
55 |
+
# print(response)
|
56 |
+
response = requests.get(url)
|
57 |
+
|
58 |
+
return response.json()
|
59 |
+
|
60 |
+
def split_text_into_chunks(text, chunk_size=300):
|
61 |
+
words = text.split()
|
62 |
+
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
63 |
+
return chunks
|
64 |
+
|
65 |
+
def download_pdf(paper):
|
66 |
+
pdf_url = paper["openAccessPdf"]["url"]
|
67 |
+
try:
|
68 |
+
response = requests.get(pdf_url)
|
69 |
+
response.raise_for_status()
|
70 |
+
|
71 |
+
|
72 |
+
file_object = BytesIO(response.content)
|
73 |
+
extract_text = extract_chapter(file_object)
|
74 |
+
chunks = split_text_into_chunks(extract_text)
|
75 |
+
return chunks
|
76 |
+
except:
|
77 |
+
return []
|
78 |
+
|
79 |
+
|
80 |
+
def recommendation(s2_id, limit=500):
|
81 |
+
SEMANTIC_SCHOLAR_API_URL = "https://api.semanticscholar.org/recommendations/v1/papers/forpaper/"
|
82 |
+
url = f"{SEMANTIC_SCHOLAR_API_URL}{s2_id}?limit={limit}&fields=url,title,abstract,publicationDate,isOpenAccess,openAccessPdf"
|
83 |
+
|
84 |
+
# print(url)
|
85 |
+
response = requests.get(url)
|
86 |
+
while response.status_code != 200:
|
87 |
+
time.sleep(1)
|
88 |
+
# print(response)
|
89 |
+
response = requests.get(url)
|
90 |
+
|
91 |
+
return response.json()
|
92 |
+
|
93 |
+
|
94 |
+
def extract_chapter(file_object):
|
95 |
+
pdf_reader = PyPDF2.PdfReader(file_object)
|
96 |
+
|
97 |
+
|
98 |
+
num_pages = len(pdf_reader.pages)
|
99 |
+
extraction_started = False
|
100 |
+
extracted_text = ""
|
101 |
+
for page_number in range(num_pages):
|
102 |
+
page = pdf_reader.pages[page_number]
|
103 |
+
page_text = page.extract_text()
|
104 |
+
extraction_started = True
|
105 |
+
page_number_start = page_number
|
106 |
+
if extraction_started:
|
107 |
+
extracted_text += page_text
|
108 |
+
if page_number_start + 1 < page_number:
|
109 |
+
break
|
110 |
+
return extracted_text
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
class Reviewer:
|
115 |
+
|
116 |
+
def __init__(self, api, api_base, paper_pdf, aspect, model_name, enable_rag):
|
117 |
+
self.api = api
|
118 |
+
self.api_base = api_base
|
119 |
+
self.aspect = aspect
|
120 |
+
self.paper_pdf = paper_pdf
|
121 |
+
self.model_name = model_name
|
122 |
+
self.enable_rag = enable_rag
|
123 |
+
# self.max_token_num = 50000
|
124 |
+
# self.encoding = tiktoken.get_encoding("gpt2")
|
125 |
+
|
126 |
+
|
127 |
+
def review_by_chatgpt(self, paper_list):
|
128 |
+
text, title, abstract = self.extract_from_paper(self.paper_pdf)
|
129 |
+
content = f"Paper to review: \nTitle: {title}\n" + text
|
130 |
+
|
131 |
+
if self.enable_rag:
|
132 |
+
papers = self.retrieve_papers(title, abstract)
|
133 |
+
if papers != None:
|
134 |
+
retrieval_content = ""
|
135 |
+
retrieved_papers = ""
|
136 |
+
cnt = 1
|
137 |
+
for paper in papers:
|
138 |
+
retrieval_content += f"Relevant Paper {str(cnt)}:\n"
|
139 |
+
retrieval_content += f"Title: {paper['title']}\n{paper['content']}\n\n"
|
140 |
+
retrieved_papers += f"{str(cnt)}. {paper['title']}\n"
|
141 |
+
cnt += 1
|
142 |
+
text = retrieval_content + content
|
143 |
+
chat_review_text = self.chat_review(text=text)
|
144 |
+
else:
|
145 |
+
text = content
|
146 |
+
chat_review_text = self.chat_review(text=text)
|
147 |
+
retrieved_papers = ""
|
148 |
+
else:
|
149 |
+
text = content
|
150 |
+
chat_review_text = self.chat_review(text=text)
|
151 |
+
retrieved_papers = ""
|
152 |
+
|
153 |
+
return chat_review_text, retrieved_papers
|
154 |
+
|
155 |
+
def query_gen(self, abstract):
|
156 |
+
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
|
157 |
+
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
|
158 |
+
client = AsyncOpenAI()
|
159 |
+
|
160 |
+
messages=[
|
161 |
+
{"role": "system", "content": f"Generate a TLDR in 5 words of the following text. Do not use any proposed model names or dataset names from the text. Output only the 5 words without punctuation."} ,
|
162 |
+
{"role": "user", "content": abstract},
|
163 |
+
]
|
164 |
+
|
165 |
+
responses = asyncio.run(
|
166 |
+
generate_from_openai_chat_completion(
|
167 |
+
client,
|
168 |
+
messages=[messages],
|
169 |
+
engine_name="gpt-4o-mini", # gpt-3.5-turbo
|
170 |
+
max_tokens=1000, # 32
|
171 |
+
requests_per_minute = 20,
|
172 |
+
# response_format={"type":"json_object"},
|
173 |
+
)
|
174 |
+
)
|
175 |
+
return responses[0]
|
176 |
+
|
177 |
+
|
178 |
+
def rerank(self, paper_list, title, abstract):
|
179 |
+
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
|
180 |
+
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
|
181 |
+
client = AsyncOpenAI()
|
182 |
+
|
183 |
+
rec_content = ""
|
184 |
+
rec_paper_cnt = 1
|
185 |
+
|
186 |
+
for rec_paper in paper_list:
|
187 |
+
rec_content += f"Paper {rec_paper_cnt}: {rec_paper['title']}\n{rec_paper['abstract']}\n\n"
|
188 |
+
rec_paper_cnt += 1
|
189 |
+
|
190 |
+
rec_content += f"Reference Paper: {title}\n"
|
191 |
+
rec_content += f"Abstract: {abstract}\n"
|
192 |
+
|
193 |
+
messages=[
|
194 |
+
{"role": "system", "content": f"Given the abstracts of {rec_paper_cnt-1} papers and the abstract of a reference paper, rank the papers in order of relevance to the reference paper. Output the top 5 as a list of integers in JSON format: {{'ranking': [1, 10, 4, 2, 8]}}."} ,
|
195 |
+
{"role": "user", "content": rec_content},
|
196 |
+
]
|
197 |
+
|
198 |
+
responses = asyncio.run(
|
199 |
+
generate_from_openai_chat_completion(
|
200 |
+
client,
|
201 |
+
messages=[messages],
|
202 |
+
engine_name="gpt-4o-mini", # gpt-3.5-turbo
|
203 |
+
max_tokens=1000, # 32
|
204 |
+
requests_per_minute = 20,
|
205 |
+
response_format={"type":"json_object"},
|
206 |
+
)
|
207 |
+
)
|
208 |
+
response_data = json.loads(responses[0])
|
209 |
+
rec_papers = []
|
210 |
+
for rec_num in response_data["ranking"][:5]:
|
211 |
+
num = int(rec_num)
|
212 |
+
rec_papers.append(paper_list[num-1])
|
213 |
+
|
214 |
+
return rec_papers
|
215 |
+
|
216 |
+
def extract_related_content(self, papers, aspect):
|
217 |
+
os.environ["OPENAI_BASE_URL"] = self.api_base
|
218 |
+
os.environ["OPENAI_API_KEY"] = self.api
|
219 |
+
client = AsyncOpenAI()
|
220 |
+
|
221 |
+
messages = []
|
222 |
+
chunk_index_map = []
|
223 |
+
paper_data_list = []
|
224 |
+
paper_chunk_list = []
|
225 |
+
for paper_idx, paper in enumerate(papers):
|
226 |
+
paper_chunks = download_pdf(paper)
|
227 |
+
paper_chunk_list.append(paper_chunks)
|
228 |
+
|
229 |
+
SYSTEM_INPUT = f"Read the following section from a scientific paper. If the section is related to the paper's {aspect}, output 'yes'; otherwise, output 'no'."
|
230 |
+
|
231 |
+
for chunk_idx, paper_chunk in enumerate(paper_chunks):
|
232 |
+
message = [
|
233 |
+
{"role": "system", "content": SYSTEM_INPUT},
|
234 |
+
{"role": "user", "content": paper_chunk},
|
235 |
+
]
|
236 |
+
messages.append(message)
|
237 |
+
chunk_index_map.append((paper_idx, chunk_idx)) # 标记每个 chunk 归属哪个 paper
|
238 |
+
|
239 |
+
|
240 |
+
responses = asyncio.run(
|
241 |
+
generate_from_openai_chat_completion(
|
242 |
+
client,
|
243 |
+
messages=messages,
|
244 |
+
engine_name="gpt-4o-mini",
|
245 |
+
max_tokens=1000,
|
246 |
+
requests_per_minute=100,
|
247 |
+
)
|
248 |
+
)
|
249 |
+
|
250 |
+
paper_data_list = [{"title": paper["title"], "content": ""} for paper in papers]
|
251 |
+
|
252 |
+
for (paper_idx, chunk_idx), response in zip(chunk_index_map, responses):
|
253 |
+
if response.strip().lower().startswith("yes"):
|
254 |
+
paper_data_list[paper_idx]["content"] += paper_chunk_list[paper_idx][chunk_idx] + "\n"
|
255 |
+
|
256 |
+
for idx, paper_data in enumerate(paper_data_list):
|
257 |
+
if not paper_data["content"].strip():
|
258 |
+
paper_data["content"] = papers[idx]["abstract"]
|
259 |
+
|
260 |
+
|
261 |
+
if aspect == "Methodology":
|
262 |
+
SYSTEM_INPUT = """Concatenate all the content from the methodology sections of a paper.
|
263 |
+
Remove sentences that are irrelevant to the proposed methodology or models, and keep details about key components and innovations.
|
264 |
+
Organize the result in JSON format as follows:
|
265 |
+
{
|
266 |
+
"revised_text": str, not dict, not a summary
|
267 |
+
}
|
268 |
+
"""
|
269 |
+
elif aspect == "Result Analysis":
|
270 |
+
SYSTEM_INPUT = """Concatenate all the content from the result analysis sections of a paper.
|
271 |
+
Remove sentences that are irrelevant to the result analysis of the experiments, and keep details about the metrics, case study and how the paper presents the results.
|
272 |
+
Organize the result in JSON format as follows:
|
273 |
+
{
|
274 |
+
"revised_text": str, not dict, not a summary
|
275 |
+
}
|
276 |
+
"""
|
277 |
+
elif aspect == "Experimental Design":
|
278 |
+
SYSTEM_INPUT = """Concatenate all the content from the experimental design sections of a paper.
|
279 |
+
Remove sentences that are irrelevant to the experiment setup, and keep details about the datasets, baselines, and main experimental, ablation studies.
|
280 |
+
Organize the result in JSON format as follows:
|
281 |
+
{
|
282 |
+
"revised_text": str, not dict, not a summary
|
283 |
+
}
|
284 |
+
"""
|
285 |
+
elif aspect == "Literature Review":
|
286 |
+
SYSTEM_INPUT = """Concatenate all the content from the literature review sections of a paper.
|
287 |
+
Remove sentences that are irrelevant to the literature review, and keep details about the related works.
|
288 |
+
Organize the result in JSON format as follows:
|
289 |
+
{
|
290 |
+
"revised_text": str, not dict, not a summary
|
291 |
+
}
|
292 |
+
"""
|
293 |
+
messages = []
|
294 |
+
for paper_data in paper_data_list:
|
295 |
+
message=[
|
296 |
+
{"role": "system", "content": SYSTEM_INPUT} ,
|
297 |
+
{"role": "user", "content": paper_data["content"]},
|
298 |
+
]
|
299 |
+
messages.append(message)
|
300 |
+
|
301 |
+
responses = asyncio.run(
|
302 |
+
generate_from_openai_chat_completion(
|
303 |
+
client,
|
304 |
+
messages=messages,
|
305 |
+
engine_name="gpt-4o-mini", # gpt-3.5-turbo
|
306 |
+
max_tokens=1000, # 32
|
307 |
+
requests_per_minute = 20,
|
308 |
+
response_format={"type":"json_object"},
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
results = []
|
313 |
+
for paper_data, response in zip(paper_data_list, responses):
|
314 |
+
response = json.loads(response)
|
315 |
+
results.append({"title": paper_data["title"], "content": response["revised_text"]})
|
316 |
+
return results
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
def chat_review(self, text):
|
321 |
+
os.environ["OPENAI_BASE_URL"] = self.api_base
|
322 |
+
os.environ["OPENAI_API_KEY"] = self.api
|
323 |
+
client = AsyncOpenAI()
|
324 |
+
|
325 |
+
if self.enable_rag:
|
326 |
+
messages=[
|
327 |
+
{"role": "system", "content": f"Read the following content from several papers to gain knowledge in the relevant field. Using this knowledge, review a new scientific paper in this field. Based on existing research, identify the limitations of the 'Paper to Review'. Generate the major limitations related to its {self.aspect} in this paper. Do not include any limitation explicitly mentioned in the paper itself and return only the list of limitations. Return only the limitations in the following JSON format: {{\"limitations\": <a list of limitations>"} ,
|
328 |
+
{"role": "user", "content": text},
|
329 |
+
]
|
330 |
+
else:
|
331 |
+
messages=[
|
332 |
+
{"role": "system", "content": f"Read the following scientific paper and generate major limitations in this paper about its {self.aspect}. Do not include any limitation explicitly mentioned in the paper itself and return only the limitations. Return only the limitations in the following JSON format: {{\"limitations\": <a list of limitations>"} ,
|
333 |
+
{"role": "user", "content": text},
|
334 |
+
]
|
335 |
+
try:
|
336 |
+
responses = asyncio.run(
|
337 |
+
generate_from_openai_chat_completion(
|
338 |
+
client,
|
339 |
+
messages=[messages],
|
340 |
+
engine_name=self.model_name, # gpt-3.5-turbo
|
341 |
+
max_tokens=1000, # 32
|
342 |
+
requests_per_minute = 20,
|
343 |
+
# response_format={"type":"json_object"},
|
344 |
+
)
|
345 |
+
)
|
346 |
+
try:
|
347 |
+
limitations = json.loads(responses[0])["limitations"]
|
348 |
+
result = ""
|
349 |
+
limit_cnt = 1
|
350 |
+
for limitation in limitations:
|
351 |
+
result += f"{str(limit_cnt)}. {limitation}\n"
|
352 |
+
limit_cnt += 1
|
353 |
+
except:
|
354 |
+
SYSTEM_INPUT = f"Below is an output from an LLM about several limitations of a scientific paper. Please extract the list of limitations and DO NOT make any modification to the original limitations. Return the limitations in the following JSON format: {{\"limitations\": <a list of limitations>}}. If there is no valid response inthe output, return {{\"limitations\": {{}}}}"
|
355 |
+
messages=[
|
356 |
+
{"role": "system", "content": SYSTEM_INPUT},
|
357 |
+
{"role": "user", "content": responses[0]},
|
358 |
+
]
|
359 |
+
responses = asyncio.run(
|
360 |
+
generate_from_openai_chat_completion(
|
361 |
+
client,
|
362 |
+
messages=[messages],
|
363 |
+
engine_name="gpt-4o-mini", # gpt-3.5-turbo
|
364 |
+
max_tokens=1000, # 32
|
365 |
+
requests_per_minute = 20,
|
366 |
+
response_format={"type":"json_object"},
|
367 |
+
)
|
368 |
+
)
|
369 |
+
limitations = json.loads(responses[0])["limitations"]
|
370 |
+
result = ""
|
371 |
+
limit_cnt = 1
|
372 |
+
for limitation in limitations:
|
373 |
+
result += f"{str(limit_cnt)}. {limitation}\n"
|
374 |
+
limit_cnt += 1
|
375 |
+
# for choice in response.choices:
|
376 |
+
# result += choice.message.content
|
377 |
+
# result = insert_sentence(result, '**Generated by ChatGPT, no copying allowed!**', 50)
|
378 |
+
except Exception as e:
|
379 |
+
result = "Error: "+ str(e)
|
380 |
+
# usage = 'xxxxx'
|
381 |
+
print("********"*10)
|
382 |
+
print(result)
|
383 |
+
print("********"*10)
|
384 |
+
return result
|
385 |
+
|
386 |
+
|
387 |
+
def retrieve_papers(self, title, abstract):
|
388 |
+
query = title
|
389 |
+
search_results = search_paper(query)
|
390 |
+
if search_results != [] and search_results["data"][0]["title"].lower() == title.lower():
|
391 |
+
search_result = search_results[0]
|
392 |
+
retrieval = recommendation(search_result["paperId"])
|
393 |
+
recommended_paper_list = []
|
394 |
+
for recommended_paper in retrieval["recommendedPapers"]:
|
395 |
+
if recommended_paper["abstract"] is None:
|
396 |
+
continue
|
397 |
+
if recommended_paper["isOpenAccess"] and recommended_paper["openAccessPdf"]!= None:
|
398 |
+
recommended_paper_list.append(recommended_paper)
|
399 |
+
|
400 |
+
if len(recommended_paper_list) >= 20:
|
401 |
+
break
|
402 |
+
|
403 |
+
else:
|
404 |
+
query = self.query_gen(abstract)
|
405 |
+
search_results = search_paper(query)
|
406 |
+
recommended_paper_list = []
|
407 |
+
if search_results["data"] == []:
|
408 |
+
return None
|
409 |
+
for search_result in search_results["data"]:
|
410 |
+
retrieval = recommendation(search_result["paperId"])
|
411 |
+
recommended_papers = []
|
412 |
+
for recommended_paper in retrieval["recommendedPapers"]:
|
413 |
+
if recommended_paper["abstract"] is None:
|
414 |
+
continue
|
415 |
+
if recommended_paper["isOpenAccess"] and recommended_paper["openAccessPdf"]!= None:
|
416 |
+
recommended_papers.append(recommended_paper)
|
417 |
+
|
418 |
+
if len(recommended_papers) >= 5:
|
419 |
+
break
|
420 |
+
recommended_paper_list.extend(recommended_papers)
|
421 |
+
|
422 |
+
if recommended_paper_list == []:
|
423 |
+
return None
|
424 |
+
final_papers = self.rerank(recommended_paper_list, title, abstract)
|
425 |
+
retrieved_papers = self.extract_related_content(final_papers, self.aspect)
|
426 |
+
|
427 |
+
return retrieved_papers
|
428 |
+
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
def extract_from_paper(self, pdf_path):
|
433 |
+
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
|
434 |
+
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
|
435 |
+
client = AsyncOpenAI()
|
436 |
+
|
437 |
+
# with open(pdf_path, 'rb') as f: # TODO
|
438 |
+
# pdf_bytes = f.read()
|
439 |
+
# file_object = BytesIO(pdf_bytes)
|
440 |
+
|
441 |
+
file_object = BytesIO(pdf_path) # TODO
|
442 |
+
pdf_reader = PyPDF2.PdfReader(file_object)
|
443 |
+
|
444 |
+
doc = fitz.open(stream=pdf_path, filetype="pdf") # TODO
|
445 |
+
page = doc.load_page(0)
|
446 |
+
pix = page.get_pixmap()
|
447 |
+
image_bytes = pix.tobytes("png")
|
448 |
+
|
449 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
450 |
+
|
451 |
+
USER_INPUT = [{"type": "text", "text": "The first page of the paper: "}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}]
|
452 |
+
messages=[
|
453 |
+
{"role": "system", "content": "Given the first-page image of a scientific paper in PDF format, extract and return the title and abstract in the following JSON format: {\"title\": \"<extracted title>\", \"abstract\": \"<extracted abstract>\"}."} ,
|
454 |
+
{"role": "user", "content": USER_INPUT},
|
455 |
+
]
|
456 |
+
responses = asyncio.run(
|
457 |
+
generate_from_openai_chat_completion(
|
458 |
+
client,
|
459 |
+
messages=[messages],
|
460 |
+
engine_name="gpt-4o-mini", # gpt-3.5-turbo
|
461 |
+
max_tokens=1000, # 32
|
462 |
+
requests_per_minute = 20,
|
463 |
+
response_format={"type":"json_object"},
|
464 |
+
)
|
465 |
+
)
|
466 |
+
|
467 |
+
response = json.loads(responses[0])
|
468 |
+
title = response["title"]
|
469 |
+
abstract = response["abstract"]
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
num_pages = len(pdf_reader.pages)
|
474 |
+
extraction_started = False
|
475 |
+
extracted_text = ""
|
476 |
+
for page_number in range(num_pages):
|
477 |
+
page = pdf_reader.pages[page_number]
|
478 |
+
page_text = page.extract_text()
|
479 |
+
|
480 |
+
extraction_started = True
|
481 |
+
page_number_start = page_number
|
482 |
+
if extraction_started:
|
483 |
+
extracted_text += page_text
|
484 |
+
if page_number_start + 1 < page_number:
|
485 |
+
break
|
486 |
+
return extracted_text, title, abstract
|
487 |
+
|
488 |
+
def main(api,api_base, paper_pdf, aspect, model_name, enable_rag):
|
489 |
+
start_time = time.time()
|
490 |
+
# print("key: ", PRIVATE_API_KEY, "\nbase: ", PRIVATE_API_BASE)
|
491 |
+
comments = ''
|
492 |
+
output2 = ''
|
493 |
+
retrieved_content = ''
|
494 |
+
if not api or not paper_pdf:
|
495 |
+
comments = "It looks like there's a missing API key or PDF input. Make sure you've provided the necessary information or uploaded the required file."
|
496 |
+
output2 = "It looks like there's a missing API key or PDF input. Make sure you've provided the necessary information or uploaded the required file."
|
497 |
+
else:
|
498 |
+
try:
|
499 |
+
reviewer1 = Reviewer(api,api_base, paper_pdf, aspect, model_name, enable_rag)
|
500 |
+
comments, retrieved_content = reviewer1.review_by_chatgpt(paper_list=paper_pdf)
|
501 |
+
time_used = time.time() - start_time
|
502 |
+
output2 ="Processing Time:"+ str(round(time_used, 2)) +"seconds"
|
503 |
+
except Exception as e:
|
504 |
+
comments = "Error: "+ str(e)
|
505 |
+
output2 = "Error: "+ str(e)
|
506 |
+
return retrieved_content, comments, output2
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
########################################################################################################
|
513 |
+
|
514 |
+
title = "LimitGen"
|
515 |
+
|
516 |
+
|
517 |
+
description = '''<div align='left'>
|
518 |
+
<strong>We present a demo for our paper: Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers. Upload the PDF of the paper you want to review, and the demo will automatically generate its identified limitations.
|
519 |
+
</div>
|
520 |
+
'''
|
521 |
+
|
522 |
+
inp = [gradio.Textbox(label="Input your API-key",
|
523 |
+
value="",
|
524 |
+
type='password'),
|
525 |
+
gradio.Textbox(label="Input the base URL (ending with /v1). Skip this step if using the original OpenAI API.",
|
526 |
+
value="https://api.openai.com/v1"),
|
527 |
+
|
528 |
+
gradio.File(label="Upload the PDF file of your paper (Make sure the PDF is fully uploaded before clicking Submit)",type="binary"),
|
529 |
+
gradio.Radio(choices=["Methodology", "Experimental Design", "Result Analysis", "Literature Review"],
|
530 |
+
value="Methodology",
|
531 |
+
label="Select the aspect"),
|
532 |
+
gradio.Textbox(label="Input the model name",
|
533 |
+
value="gpt-4o-mini"),
|
534 |
+
gradio.Checkbox(label="Enable RAG", value=False)
|
535 |
+
|
536 |
+
]
|
537 |
+
|
538 |
+
chat_reviewer_gui = gradio.Interface(fn=main,
|
539 |
+
inputs=inp,
|
540 |
+
outputs = [gradio.Textbox(lines=6, label="Retrieved Literature"), gradio.Textbox(lines=15, label="Output"), gradio.Textbox(lines=2, label="Resource Statistics")],
|
541 |
+
title=title,
|
542 |
+
description=description)
|
543 |
+
|
544 |
+
# Start server
|
545 |
+
chat_reviewer_gui .launch(quiet=True, show_api=False)
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PyMuPDF==1.21.1
|
2 |
+
tenacity==8.2.2
|
3 |
+
pybase64==1.2.3
|
4 |
+
Pillow==9.4.0
|
5 |
+
openai==1.33.0
|
6 |
+
markdown
|
7 |
+
gradio==3.20.1
|
8 |
+
PyPDF2
|
9 |
+
aiolimiter
|
10 |
+
pdf2image
|
11 |
+
httpx==0.27.2
|