Spaces:
Running
Running
File size: 11,024 Bytes
89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 df523ee 89ef0d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Load configuration from YAML file\n",
"config = {\n",
" \"model_name\": \"llama3-70b-8192\",\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/yale/work/meta-prompt/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7861\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/yale/work/meta-prompt/.venv/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:141: LangChainDeprecationWarning: The class `ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import ChatOpenAI`.\n",
" warn_deprecated(\n"
]
}
],
"source": [
"import json\n",
"import yaml\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"class TaskDescriptionGenerator:\n",
" def __init__(self, model_temperature=0.7):\n",
" self.model = ChatOpenAI(model=config[\"model_name\"], temperature=model_temperature)\n",
" self.output_parser = StrOutputParser()\n",
" \n",
" self.description_prompt = ChatPromptTemplate.from_template(\n",
" \"\"\"Given the following JSON example for a task type:\n",
" {raw_example}\n",
"\n",
" Provide a concise description of the task type, including the format and style of the output.\n",
"\n",
" Format your response as follows:\n",
" Task Description: [Your description here]\n",
" \"\"\"\n",
" )\n",
"\n",
" self.briefs_prompt = ChatPromptTemplate.from_template(\n",
" \"\"\"Given the following task type description:\n",
" Task Description: {description}\n",
"\n",
" Generate descriptions for 3 new examples with detailed attributes\n",
" based on this task type.\n",
"\n",
" Format your response as a valid YAML object with a single key\n",
" 'brief_descriptions' containing a YAML array of 3 objects, each\n",
" with a 'description' field.\n",
" \"\"\"\n",
" )\n",
"\n",
" self.examples_from_briefs_prompt = ChatPromptTemplate.from_template(\n",
" \"\"\"Given the following task type description, brief description for new examples, \n",
" and JSON example:\n",
"\n",
" Task Description: {description}\n",
" Brief Description: {brief_description}\n",
"\n",
" Example:\n",
" {raw_example}\n",
"\n",
" Generate 3 more input/output examples for this task type, based on the brief\n",
" description, in the same JSON format.\n",
"\n",
" Format your response as a valid JSON object with a single key 'examples' \n",
" containing a JSON array of 3 objects, each with 'input' and 'output' fields.\n",
" \"\"\"\n",
" )\n",
"\n",
" self.examples_prompt = ChatPromptTemplate.from_template(\n",
" \"\"\"Given the following task type description, and input/output example:\n",
" Task Description: {description}\n",
" Example: {example}\n",
"\n",
" Generate 3 new input/output examples for this task type.\n",
"\n",
" Format your response as a valid JSON object with a single key 'examples' \n",
" containing a JSON array of 3 objects, each with 'input' and 'output' fields.\n",
" \"\"\"\n",
" )\n",
"\n",
" self.description_chain = self.description_prompt | self.model | self.output_parser\n",
" self.briefs_chain = self.briefs_prompt | self.model | self.output_parser\n",
" # bind json_object to the model\n",
" json_model = self.model.bind(response_format={\"type\": \"json_object\"})\n",
" self.examples_from_briefs_chain = self.examples_from_briefs_prompt | json_model | self.output_parser\n",
" self.examples_chain = self.examples_prompt | json_model | self.output_parser\n",
"\n",
" def generate_description(self, raw_example_str):\n",
" result = self.description_chain.invoke({\n",
" \"raw_example\": raw_example_str\n",
" })\n",
" return result.split(\"Task Description: \")[1].strip()\n",
"\n",
" def generate_briefs(self, description):\n",
" result = self.briefs_chain.invoke({\n",
" \"description\": description\n",
" })\n",
" # return result.split(\"Brief Description: \")[1].strip()\n",
" return result\n",
"\n",
" def generate_examples_from_briefs(self, description, brief_description, raw_example_str):\n",
" result = self.examples_from_briefs_chain.invoke({\n",
" \"description\": description,\n",
" \"brief_description\": brief_description,\n",
" \"raw_example\": raw_example_str\n",
" })\n",
"\n",
" try:\n",
" result = result.strip()\n",
" if result.startswith('```') and result.endswith('```'):\n",
" result = result.strip('```').strip()\n",
" if result.startswith('json'):\n",
" result = result.strip('json').strip()\n",
" return json.loads(result)\n",
" except json.JSONDecodeError as e:\n",
" raise ValueError(f\"The generated examples are not in valid JSON format. Error: {str(e)} Result: {result}\")\n",
" \n",
" def generate_examples(self, description, example):\n",
" result = self.examples_chain.invoke({\n",
" \"description\": description,\n",
" \"example\": example\n",
" })\n",
" \n",
" try:\n",
" result = result.strip()\n",
" if result.startswith('```') and result.endswith('```'):\n",
" result = result.strip('```').strip()\n",
" if result.startswith('json'):\n",
" result = result.strip('json').strip()\n",
" return json.loads(result)\n",
" except json.JSONDecodeError as e:\n",
" raise ValueError(f\"The generated examples are not in valid JSON format. Error: {str(e)} Result: {result}\")\n",
"\n",
" def process(self, input_str):\n",
" try:\n",
" # Try to parse as JSON\n",
" try:\n",
" data = json.loads(input_str)\n",
" except json.JSONDecodeError:\n",
" # If JSON parsing fails, try to parse as YAML\n",
" try:\n",
" data = yaml.safe_load(input_str)\n",
" except yaml.YAMLError as e:\n",
" raise ValueError(\"Invalid input string. Error: {}\".format(str(e)))\n",
" \n",
" if not isinstance(data, dict) or 'input' not in data or 'output' not in data:\n",
" raise ValueError(\"Invalid input format. Expected an object with 'input' and 'output' fields.\")\n",
" \n",
" description = self.generate_description(json.dumps(data, ensure_ascii=False))\n",
" brief_description = self.generate_briefs(description)\n",
" new_examples_from_briefs = self.generate_examples_from_briefs(description, brief_description, json.dumps(data, ensure_ascii=False))\n",
" new_examples = self.generate_examples(description, json.dumps(data, ensure_ascii=False))\n",
" \n",
" output = {\n",
" \"task_description\": description,\n",
" \"brief_description\": brief_description,\n",
" \"additional_examples\": list(new_examples_from_briefs.values()) + list(new_examples.values())\n",
" }\n",
" \n",
" return json.dumps(output, indent=2, ensure_ascii=False)\n",
" \n",
" except Exception as e:\n",
" raise RuntimeError(f\"An error occurred during processing: {str(e)}\")\n",
" \n",
"\n",
"import gradio as gr\n",
"\n",
"def process_json(input_json):\n",
" try:\n",
" generator = TaskDescriptionGenerator()\n",
" result = generator.process(input_json)\n",
" return \"Process completed successfully. Result:\\n\" + result\n",
" except Exception as e:\n",
" return f\"An error occurred: {str(e)}\"\n",
"\n",
"demo = gr.Interface(\n",
" fn=process_json,\n",
" inputs=gr.Textbox(label=\"Input JSON\"),\n",
" outputs=gr.Textbox(label=\"Output\"),\n",
" title=\"Task Description Generator\",\n",
" description=\"Enter a JSON object with 'input' and 'output' fields to generate a task description and additional examples.\"\n",
")\n",
"\n",
"if __name__ == \"__main__\":\n",
" demo.launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|