File size: 15,774 Bytes
48f5e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# meta_prompt_utils.py

import json
import logging
import io
from typing import Any, Dict, List, Optional, Union
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from meta_prompt import *
from meta_prompt.sample_generator import TaskDescriptionGenerator
from pythonjsonlogger import jsonlogger
from app.config import MetaPromptConfig, RoleMessage
from confz import BaseConfig, CLArgSource, EnvSource, FileSource

def prompt_templates_confz2langchain(
    prompt_templates: Dict[str, Dict[str, List[RoleMessage]]]
) -> Dict[str, ChatPromptTemplate]:
    return {
        node: ChatPromptTemplate.from_messages(
            [
                (role_message.role, role_message.message)
                for role_message in role_messages
            ]
        )
        for node, role_messages in prompt_templates.items()
    }

class LLMModelFactory:
    _instance = None

    def __new__(cls):
        if not cls._instance:
            cls._instance = super(LLMModelFactory, cls).__new__(cls)
        return cls._instance

    def create(self, model_type: str, **kwargs) -> BaseLanguageModel:
        model_class = globals()[model_type]
        return model_class(**kwargs)

def chat_log_2_chatbot_list(chat_log: str) -> List[List[str]]:
    chatbot_list = []
    if chat_log is None or chat_log == '':
        return chatbot_list
    for line in chat_log.splitlines():
        try:
            json_line = json.loads(line)
            if 'action' in json_line:
                if json_line['action'] == 'invoke':
                    chatbot_list.append([json_line['message'], None])
                if json_line['action'] == 'response':
                    chatbot_list.append([None, json_line['message']])
        except json.decoder.JSONDecodeError as e:
            print(f"Error decoding JSON log output: {e}")
            print(line)
        except KeyError as e:
            print(f"Error accessing key in JSON log output: {e}")
            print(line)
    return chatbot_list

def get_current_model(simple_model_name: str,
                      advanced_model_name: str,
                      expert_model_name: str,
                      expert_model_config: Optional[Dict[str, Any]] = None,
                      config: MetaPromptConfig = None,
                      active_model_tab: str = "Simple") -> BaseLanguageModel:
    model_mapping = {
        "Simple": simple_model_name,
        "Advanced": advanced_model_name,
        "Expert": expert_model_name
    }
    
    try:
        model_name = model_mapping.get(active_model_tab, simple_model_name)
        model = config.llms[model_name]
        model_type = model.type
        model_config = model.model_dump(exclude={'type'})
    
        if active_model_tab == "Expert" and expert_model_config:
            model_config.update(expert_model_config)
    
        return LLMModelFactory().create(model_type, **model_config)
    
    except KeyError as e:
        logging.error(f"Configuration key error: {e}")
        raise ValueError(f"Invalid model name or configuration: {e}")
    
    except Exception as e:
        logging.error(f"An unexpected error occurred: {e}")
        raise RuntimeError(f"Failed to retrieve the model: {e}")

def evaluate_system_message(system_message, user_message, simple_model,
                            advanced_executor_model, expert_executor_model,
                            expert_executor_model_temperature=0.1,
                            config: MetaPromptConfig = None,
                            active_model_tab: str = "Simple"):
    llm = get_current_model(simple_model, advanced_executor_model,
                            expert_executor_model,
                            {"temperature": expert_executor_model_temperature},
                            config, active_model_tab)
    template = ChatPromptTemplate.from_messages([
        ("system", "{system_message}"),
        ("human", "{user_message}")
    ])
    try:
        output = llm.invoke(template.format(
            system_message=system_message, user_message=user_message))
        return output.content if hasattr(output, 'content') else ""
    except Exception as e:
        raise Exception(f"Error: {e}")

def generate_acceptance_criteria(user_message, expected_output,
                                 simple_model, advanced_executor_model,
                                 expert_prompt_acceptance_criteria_model,
                                 expert_prompt_acceptance_criteria_temperature=0.1,
                                 prompt_template_group: Optional[str] = None,
                                 config: MetaPromptConfig = None,
                                 active_model_tab: str = "Simple"):
    log_stream = io.StringIO()
    logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
    log_handler = logging.StreamHandler(log_stream) if logger else None

    if log_handler:
        log_handler.setFormatter(
            jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
        )
        logger.addHandler(log_handler)

    llm = get_current_model(simple_model, advanced_executor_model,
                            expert_prompt_acceptance_criteria_model,
                            {"temperature": expert_prompt_acceptance_criteria_temperature},
                            config, active_model_tab)
    if prompt_template_group is None:
        prompt_template_group = 'default'
    prompt_templates = prompt_templates_confz2langchain(
        config.prompt_templates[prompt_template_group]
    )
    acceptance_criteria_graph = MetaPromptGraph(llms={
        NODE_ACCEPTANCE_CRITERIA_DEVELOPER: llm
    }, prompts=prompt_templates,
    verbose=config.verbose, logger=logger)
    state = AgentState(
        user_message=user_message,
        expected_output=expected_output
    )
    output_state = acceptance_criteria_graph.run_acceptance_criteria_graph(state)

    if log_handler:
        log_handler.close()
        log_output = log_stream.getvalue()
    else:
        log_output = None
    return output_state.get('acceptance_criteria', ""), chat_log_2_chatbot_list(log_output)

def generate_initial_system_message(
    user_message: str,
    expected_output: str,
    simple_model: str,
    advanced_executor_model: str,
    expert_prompt_initial_developer_model: str,
    expert_prompt_initial_developer_temperature: float = 0.1,
    prompt_template_group: Optional[str] = None,
    config: MetaPromptConfig = None,
    active_model_tab: str = "Simple"
) -> tuple:
    log_stream = io.StringIO()
    logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
    log_handler = logging.StreamHandler(log_stream) if logger else None

    if log_handler:
        log_handler.setFormatter(
            jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
        )
        logger.addHandler(log_handler)

    llm = get_current_model(
        simple_model,
        advanced_executor_model,
        expert_prompt_initial_developer_model,
        {"temperature": expert_prompt_initial_developer_temperature},
        config,
        active_model_tab
    )

    if prompt_template_group is None:
        prompt_template_group = 'default'
    prompt_templates = prompt_templates_confz2langchain(
        config.prompt_templates[prompt_template_group]
    )

    initial_system_message_graph = MetaPromptGraph(
        llms={NODE_PROMPT_INITIAL_DEVELOPER: llm},
        prompts=prompt_templates,
        verbose=config.verbose,
        logger=logger
    )

    state = AgentState(
        user_message=user_message,
        expected_output=expected_output
    )

    output_state = initial_system_message_graph.run_prompt_initial_developer_graph(state)

    if log_handler:
        log_handler.close()
        log_output = log_stream.getvalue()
    else:
        log_output = None

    system_message = output_state.get('system_message', "")
    return system_message, chat_log_2_chatbot_list(log_output)

def process_message(
    user_message: str, expected_output: str, acceptance_criteria: str,
    initial_system_message: str, recursion_limit: int, max_output_age: int,
    llms: Union[BaseLanguageModel, Dict[str, BaseLanguageModel]],
    prompt_template_group: Optional[str] = None,
    aggressive_exploration: bool = False,
    config: MetaPromptConfig = None
) -> tuple:
    input_state = AgentState(
        user_message=user_message,
        expected_output=expected_output,
        acceptance_criteria=acceptance_criteria,
        system_message=initial_system_message,
        max_output_age=max_output_age
    )

    log_stream = io.StringIO()
    logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
    log_handler = logging.StreamHandler(log_stream) if logger else None
    if log_handler:
        log_handler.setFormatter(jsonlogger.JsonFormatter(
            '%(asctime)s %(name)s %(levelname)s %(message)s'))
        logger.addHandler(log_handler)

    if prompt_template_group is None:
        prompt_template_group = 'default'
    prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group])
    meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates,
                                        aggressive_exploration=aggressive_exploration,
                                        verbose=config.verbose, logger=logger)
    try:
        output_state = meta_prompt_graph(input_state, recursion_limit=recursion_limit)
    except Exception as e:
        raise Exception(f"Error: {e}")           

    if log_handler:
        log_handler.close()
        log_output = log_stream.getvalue()
    else:
        log_output = None

    system_message = output_state.get(
        'best_system_message', "Error: The output state does not contain a valid 'best_system_message'")
    output = output_state.get(
        'best_output', "Error: The output state does not contain a valid 'best_output'")
    analysis = output_state.get(
        'analysis', "Error: The output state does not contain a valid 'analysis'")
    acceptance_criteria = output_state.get(
        'acceptance_criteria', "Error: The output state does not contain a valid 'acceptance_criteria'")

    return (system_message, output, analysis, acceptance_criteria, chat_log_2_chatbot_list(log_output))

def initialize_llm(model_name: str, model_config: Optional[Dict[str, Any]] = None, config: MetaPromptConfig = None) -> Any:
    try:
        llm_config = config.llms[model_name]
        model_type = llm_config.type
        dumped_config = llm_config.model_dump(exclude={'type'})

        if model_config:
            dumped_config.update(model_config)

        return LLMModelFactory().create(model_type, **dumped_config)
    except KeyError:
        raise KeyError(f"No configuration exists for the model name: {model_name}")
    except NotImplementedError:
        raise NotImplementedError(
            f"Unrecognized type configured for the language model: {model_type}"
        )

# Sample generator functions

def process_json(input_json, model_name, generating_batch_size, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.process(input_json, generating_batch_size)
        description = result["description"]
        suggestions = result["suggestions"]
        examples_directly = [[example["input"], example["output"]]
                             for example in result["examples_directly"]["examples"]]
        input_analysis = result["examples_from_briefs"]["input_analysis"]
        new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
        examples_from_briefs = [[example["input"], example["output"]]
                                for example in result["examples_from_briefs"]["examples"]]
        examples = [[example["input"], example["output"]]
                    for example in result["additional_examples"]]
        return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}. Returning default values.")

def generate_description_only(input_json, model_name, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_description(input_json)
        description = result["description"]
        suggestions = result["suggestions"]
        return description, suggestions
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}")

def analyze_input(description, model_name, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        input_analysis = generator.analyze_input(description)
        return input_analysis
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}")

def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        briefs = generator.generate_briefs(
            description, input_analysis, generating_batch_size)
        return briefs
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}")

def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_examples_from_briefs(
            description, new_example_briefs, input_str, generating_batch_size)
        examples = [[example["input"], example["output"]]
                    for example in result["examples"]]
        return examples
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}")

def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature, config: MetaPromptConfig = None):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_examples_directly(
            description, raw_example, generating_batch_size)
        examples = [[example["input"], example["output"]]
                    for example in result["examples"]]
        return examples
    except Exception as e:
        raise Exception(f"An error occurred: {str(e)}")

class FileConfig(BaseConfig):
    config_file: str = 'config.yml'  # default path

def load_config():
    pre_config_sources = [
        EnvSource(prefix='METAPROMPT_', allow_all=True),
        CLArgSource()
    ]
    pre_config = FileConfig(config_sources=pre_config_sources)

    config_sources = [
        FileSource(file=pre_config.config_file, optional=True),
        EnvSource(prefix='METAPROMPT_', allow_all=True),
        CLArgSource()
    ]

    return MetaPromptConfig(config_sources=config_sources)

# Add any additional utility functions here if needed