Spaces:
Sleeping
Sleeping
File size: 27,330 Bytes
db39ccb 7ea8528 4f91159 9a76340 4f91159 9a76340 4f91159 9a76340 4f91159 9a76340 db39ccb 9a76340 4f91159 f7e0aa2 4f91159 9a76340 db39ccb 4f91159 db39ccb 4f91159 9a76340 4f91159 9a76340 db39ccb 4f91159 9a76340 4f91159 9a76340 db39ccb 4f91159 9a76340 4f91159 9a76340 4f91159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import pandas as pd
import streamlit as st
import json
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from meta_prompt import *
from pythonjsonlogger import jsonlogger
from app.config import MetaPromptConfig, RoleMessage
from confz import BaseConfig, CLArgSource, EnvSource, FileSource
import io
def prompt_templates_confz2langchain(
prompt_templates: Dict[str, Dict[str, List[RoleMessage]]]
) -> Dict[str, ChatPromptTemplate]:
return {
node: ChatPromptTemplate.from_messages(
[
(role_message.role, role_message.message)
for role_message in role_messages
]
)
for node, role_messages in prompt_templates.items()
}
class LLMModelFactory:
_instance = None
def __new__(cls):
if not cls._instance:
cls._instance = super(LLMModelFactory, cls).__new__(cls)
return cls._instance
def create(self, model_type: str, **kwargs) -> BaseLanguageModel:
model_class = globals()[model_type]
return model_class(**kwargs)
def chat_log_2_chatbot_list(chat_log: str) -> List[List[str]]:
chatbot_list = []
if chat_log is None or chat_log == '':
return chatbot_list
for line in chat_log.splitlines():
try:
json_line = json.loads(line)
if 'action' in json_line:
if json_line['action'] == 'invoke':
chatbot_list.append([json_line['message'], None])
if json_line['action'] == 'response':
chatbot_list.append([None, json_line['message']])
except json.decoder.JSONDecodeError as e:
print(f"Error decoding JSON log output: {e}")
print(line)
except KeyError as e:
print(f"Error accessing key in JSON log output: {e}")
print(line)
return chatbot_list
active_model_tab = "Simple"
def get_current_model(simple_model_name: str,
advanced_model_name: str,
expert_model_name: str,
expert_model_config: Optional[Dict[str, Any]] = None) -> BaseLanguageModel:
model_mapping = {
"Simple": simple_model_name,
"Advanced": advanced_model_name,
"Expert": expert_model_name
}
try:
model_name = model_mapping.get(active_model_tab, simple_model_name)
model = config.llms[model_name]
model_type = model.type
model_config = model.model_dump(exclude={'type'})
if active_model_tab == "Expert" and expert_model_config:
model_config.update(expert_model_config)
return LLMModelFactory().create(model_type, **model_config)
except KeyError as e:
logging.error(f"Configuration key error: {e}")
raise ValueError(f"Invalid model name or configuration: {e}")
except Exception as e:
logging.error(f"An unexpected error occurred: {e}")
raise RuntimeError(f"Failed to retrieve the model: {e}")
def evaluate_system_message(system_message, user_message, simple_model,
advanced_executor_model, expert_executor_model,
expert_executor_model_temperature=0.1):
llm = get_current_model(simple_model, advanced_executor_model,
expert_executor_model,
{"temperature": expert_executor_model_temperature})
template = ChatPromptTemplate.from_messages([
("system", "{system_message}"),
("human", "{user_message}")
])
try:
output = llm.invoke(template.format(
system_message=system_message, user_message=user_message))
return output.content if hasattr(output, 'content') else ""
except Exception as e:
raise st.error(f"Error: {e}")
def generate_acceptance_criteria(user_message, expected_output,
simple_model, advanced_executor_model,
expert_prompt_acceptance_criteria_model,
expert_prompt_acceptance_criteria_temperature=0.1,
prompt_template_group: Optional[str] = None):
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
)
logger.addHandler(log_handler)
llm = get_current_model(simple_model, advanced_executor_model,
expert_prompt_acceptance_criteria_model,
{"temperature": expert_prompt_acceptance_criteria_temperature})
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(
config.prompt_templates[prompt_template_group]
)
acceptance_criteria_graph = MetaPromptGraph(llms={
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: llm
}, prompts=prompt_templates,
verbose=config.verbose, logger=logger)
state = AgentState(
user_message=user_message,
expected_output=expected_output
)
output_state = acceptance_criteria_graph.run_acceptance_criteria_graph(state)
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
return output_state.get('acceptance_criteria', ""), chat_log_2_chatbot_list(log_output)
def generate_initial_system_message(
user_message: str,
expected_output: str,
simple_model: str,
advanced_executor_model: str,
expert_prompt_initial_developer_model: str,
expert_prompt_initial_developer_temperature: float = 0.1,
prompt_template_group: Optional[str] = None
) -> tuple:
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
)
logger.addHandler(log_handler)
llm = get_current_model(
simple_model,
advanced_executor_model,
expert_prompt_initial_developer_model,
{"temperature": expert_prompt_initial_developer_temperature}
)
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(
config.prompt_templates[prompt_template_group]
)
initial_system_message_graph = MetaPromptGraph(
llms={NODE_PROMPT_INITIAL_DEVELOPER: llm},
prompts=prompt_templates,
verbose=config.verbose,
logger=logger
)
state = AgentState(
user_message=user_message,
expected_output=expected_output
)
output_state = initial_system_message_graph.run_prompt_initial_developer_graph(state)
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
system_message = output_state.get('system_message', "")
return system_message, chat_log_2_chatbot_list(log_output)
def process_message(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
llms: Union[BaseLanguageModel, Dict[str, BaseLanguageModel]],
prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False
) -> tuple:
input_state = AgentState(
user_message=user_message,
expected_output=expected_output,
acceptance_criteria=acceptance_criteria,
system_message=initial_system_message,
max_output_age=max_output_age
)
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(jsonlogger.JsonFormatter(
'%(asctime)s %(name)s %(levelname)s %(message)s'))
logger.addHandler(log_handler)
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group])
meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates,
aggressive_exploration=aggressive_exploration,
verbose=config.verbose, logger=logger)
try:
output_state = meta_prompt_graph(input_state, recursion_limit=recursion_limit)
except Exception as e:
raise st.error(f"Error: {e}")
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
system_message = output_state.get(
'best_system_message', "Error: The output state does not contain a valid 'best_system_message'")
output = output_state.get(
'best_output', "Error: The output state does not contain a valid 'best_output'")
analysis = output_state.get(
'analysis', "Error: The output state does not contain a valid 'analysis'")
acceptance_criteria = output_state.get(
'acceptance_criteria', "Error: The output state does not contain a valid 'acceptance_criteria'")
return (system_message, output, analysis, acceptance_criteria, chat_log_2_chatbot_list(log_output))
def initialize_llm(model_name: str, model_config: Optional[Dict[str, Any]] = None) -> Any:
try:
llm_config = config.llms[model_name]
model_type = llm_config.type
dumped_config = llm_config.model_dump(exclude={'type'})
if model_config:
dumped_config.update(model_config)
return LLMModelFactory().create(model_type, **dumped_config)
except KeyError:
raise KeyError(f"No configuration exists for the model name: {model_name}")
except NotImplementedError:
raise NotImplementedError(
f"Unrecognized type configured for the language model: {model_type}"
)
def process_message_with_single_llm(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
model_name: str, prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False
) -> tuple:
llm = initialize_llm(model_name)
return process_message(
user_message, expected_output, acceptance_criteria, initial_system_message,
recursion_limit, max_output_age, llm, prompt_template_group, aggressive_exploration
)
def process_message_with_2_llms(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
optimizer_model_name: str, executor_model_name: str,
prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False
) -> tuple:
optimizer_model = initialize_llm(optimizer_model_name)
executor_model = initialize_llm(executor_model_name)
llms = {
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: optimizer_model,
NODE_PROMPT_INITIAL_DEVELOPER: optimizer_model,
NODE_PROMPT_DEVELOPER: optimizer_model,
NODE_PROMPT_EXECUTOR: executor_model,
NODE_OUTPUT_HISTORY_ANALYZER: optimizer_model,
NODE_PROMPT_ANALYZER: optimizer_model,
NODE_PROMPT_SUGGESTER: optimizer_model
}
return process_message(
user_message, expected_output, acceptance_criteria,
initial_system_message, recursion_limit, max_output_age, llms,
prompt_template_group, aggressive_exploration
)
def process_message_with_expert_llms(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
initial_developer_model_name: str, initial_developer_temperature: float,
acceptance_criteria_model_name: str, acceptance_criteria_temperature: float,
developer_model_name: str, developer_temperature: float,
executor_model_name: str, executor_temperature: float,
output_history_analyzer_model_name: str, output_history_analyzer_temperature: float,
analyzer_model_name: str, analyzer_temperature: float,
suggester_model_name: str, suggester_temperature: float,
prompt_template_group: Optional[str] = None, aggressive_exploration: bool = False
) -> tuple:
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(
initial_developer_model_name, {"temperature": initial_developer_temperature}
),
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(
acceptance_criteria_model_name, {"temperature": acceptance_criteria_temperature}
),
NODE_PROMPT_DEVELOPER: initialize_llm(
developer_model_name, {"temperature": developer_temperature}
),
NODE_PROMPT_EXECUTOR: initialize_llm(
executor_model_name, {"temperature": executor_temperature}
),
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(
output_history_analyzer_model_name,
{"temperature": output_history_analyzer_temperature}
),
NODE_PROMPT_ANALYZER: initialize_llm(
analyzer_model_name, {"temperature": analyzer_temperature}
),
NODE_PROMPT_SUGGESTER: initialize_llm(
suggester_model_name, {"temperature": suggester_temperature}
)
}
return process_message(
user_message,
expected_output,
acceptance_criteria,
initial_system_message,
recursion_limit,
max_output_age,
llms,
prompt_template_group,
aggressive_exploration
)
class FileConfig(BaseConfig):
config_file: str = 'config.yml' # default path
pre_config_sources = [
EnvSource(prefix='METAPROMPT_', allow_all=True),
CLArgSource()
]
pre_config = FileConfig(config_sources=pre_config_sources)
config_sources = [
FileSource(file=pre_config.config_file, optional=True),
EnvSource(prefix='METAPROMPT_', allow_all=True),
CLArgSource()
]
config = MetaPromptConfig(config_sources=config_sources)
# Streamlit UI
st.title("Meta Prompt")
st.markdown("A tool for generating and analyzing natural language prompts using multiple language models.")
with st.sidebar:
st.header("Model Settings")
model_tab = st.selectbox("Select Model Type", ["Simple", "Advanced", "Expert"], key="model_tab")
if model_tab == "Simple":
simple_model_name_input = st.selectbox(
"Model Name",
config.llms.keys(),
index=0,
)
elif model_tab == "Advanced":
advanced_optimizer_model_name_input = st.selectbox(
"Optimizer Model Name",
config.llms.keys(),
index=0,
)
advanced_executor_model_name_input = st.selectbox(
"Executor Model Name",
config.llms.keys(),
index=1,
)
else: # Expert
expert_prompt_initial_developer_model_name_input = st.selectbox(
"Initial Developer Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_initial_developer_temperature_input = st.slider(
"Initial Developer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_acceptance_criteria_model_name_input = st.selectbox(
"Acceptance Criteria Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_acceptance_criteria_temperature_input = st.slider(
"Acceptance Criteria Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_developer_model_name_input = st.selectbox(
"Developer Model Name", config.llms.keys(), index=0
)
expert_prompt_developer_temperature_input = st.slider(
"Developer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_executor_model_name_input = st.selectbox(
"Executor Model Name", config.llms.keys(), index=1
)
expert_prompt_executor_temperature_input = st.slider(
"Executor Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_output_history_analyzer_model_name_input = st.selectbox(
"Output History Analyzer Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_output_history_analyzer_temperature_input = st.slider(
"Output History Analyzer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_analyzer_model_name_input = st.selectbox(
"Analyzer Model Name", config.llms.keys(), index=0
)
expert_prompt_analyzer_temperature_input = st.slider(
"Analyzer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_suggester_model_name_input = st.selectbox(
"Suggester Model Name", config.llms.keys(), index=0
)
expert_prompt_suggester_temperature_input = st.slider(
"Suggester Temperature", 0.0, 1.0, 0.1, 0.1
)
st.header("Prompt Template Settings")
prompt_template_group_input = st.selectbox(
"Prompt Template Group", config.prompt_templates.keys(), index=0
)
st.header("Advanced Settings")
recursion_limit_input = st.number_input("Recursion Limit", 1, 100, 16, 1)
max_output_age_input = st.number_input("Max Output Age", 1, 10, 2, 1)
aggressive_exploration_input = st.checkbox("Aggressive Exploration", False)
# Initialize session state
if 'shared_input_data' not in st.session_state:
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
if 'initial_system_message' not in st.session_state:
st.session_state.initial_system_message = ""
if 'initial_acceptance_criteria' not in st.session_state:
st.session_state.initial_acceptance_criteria = ""
if 'system_message_output' not in st.session_state:
st.session_state.system_message_output = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'analysis' not in st.session_state:
st.session_state.analysis = ""
if 'acceptance_criteria_output' not in st.session_state:
st.session_state.acceptance_criteria_output = ""
if 'chat_log' not in st.session_state:
st.session_state.chat_log = []
def copy_system_message():
st.session_state.initial_system_message = system_message_output
def copy_acceptance_criteria():
st.session_state.initial_acceptance_criteria = acceptance_criteria_output
def clear_session_state():
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
st.session_state.initial_system_message = ""
st.session_state.initial_acceptance_criteria = ""
st.session_state.system_message_output = ""
st.session_state.output = ""
st.session_state.analysis = ""
st.session_state.acceptance_criteria_output = ""
st.session_state.chat_log = []
def sync_input_data():
st.session_state.shared_input_data = data_editor_data.copy()
def pull_sample_description():
if 'description_output_text' in st.session_state:
st.session_state.initial_system_message = st.session_state.description_output_text
def generate_callback():
try:
first_input_key = data_editor_data["Input"].first_valid_index()
first_output_key = data_editor_data["Output"].first_valid_index()
user_message = data_editor_data["Input"][first_input_key].strip()
expected_output = data_editor_data["Output"][first_output_key].strip()
input_acceptance_criteria = initial_acceptance_criteria.strip() if 'initial_acceptance_criteria' in st.session_state else ""
input_system_message = initial_system_message.strip() if 'initial_system_message' in st.session_state else ""
if active_model_tab == "Simple":
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_single_llm(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit,
max_output_age,
simple_model_name,
prompt_template_group,
aggressive_exploration,
)
elif active_model_tab == "Advanced":
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_2_llms(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit,
max_output_age,
advanced_optimizer_model_name_input,
advanced_executor_model_name_input,
prompt_template_group,
aggressive_exploration,
)
else: # Expert
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_expert_llms(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit,
max_output_age,
expert_prompt_initial_developer_model_name,
expert_prompt_initial_developer_temperature_input,
expert_prompt_acceptance_criteria_model_name,
expert_prompt_acceptance_criteria_temperature_input,
expert_prompt_developer_model_name,
expert_prompt_developer_temperature_input,
expert_prompt_executor_model_name,
expert_prompt_executor_temperature_input,
expert_prompt_output_history_analyzer_model_name,
expert_prompt_output_history_analyzer_temperature_input,
expert_prompt_analyzer_model_name,
expert_prompt_analyzer_temperature_input,
expert_prompt_suggester_model_name,
expert_prompt_suggester_temperature_input,
prompt_template_group,
aggressive_exploration,
)
st.session_state.system_message_output = system_message
st.session_state.output = output
st.session_state.analysis = analysis
st.session_state.acceptance_criteria_output = acceptance_criteria
st.session_state.chat_log = chat_log
except Exception as e:
st.error(f"Error: {e}")
if active_model_tab == "Simple":
simple_model_name = simple_model_name_input
advanced_executor_model_name = None
expert_prompt_initial_developer_model_name = None
expert_prompt_acceptance_criteria_model_name = None
expert_prompt_developer_model_name = None
expert_prompt_executor_model_name = None
expert_prompt_output_history_analyzer_model_name = None
expert_prompt_analyzer_model_name = None
expert_prompt_suggester_model_name = None
elif active_model_tab == "Advanced":
simple_model_name = None
advanced_executor_model_name = advanced_executor_model_name_input
expert_prompt_initial_developer_model_name = None
expert_prompt_acceptance_criteria_model_name = None
expert_prompt_developer_model_name = None
expert_prompt_executor_model_name = None
expert_prompt_output_history_analyzer_model_name = None
expert_prompt_analyzer_model_name = None
expert_prompt_suggester_model_name = None
else: # Expert
simple_model_name = None
advanced_executor_model_name = None
expert_prompt_initial_developer_model_name = (
expert_prompt_initial_developer_model_name_input
)
expert_prompt_acceptance_criteria_model_name = (
expert_prompt_acceptance_criteria_model_name_input
)
expert_prompt_developer_model_name = expert_prompt_developer_model_name_input
expert_prompt_executor_model_name = expert_prompt_executor_model_name_input
expert_prompt_output_history_analyzer_model_name = (
expert_prompt_output_history_analyzer_model_name_input
)
expert_prompt_analyzer_model_name = expert_prompt_analyzer_model_name_input
expert_prompt_suggester_model_name = expert_prompt_suggester_model_name_input
prompt_template_group = prompt_template_group_input
recursion_limit = recursion_limit_input
max_output_age = max_output_age_input
aggressive_exploration = aggressive_exploration_input
data_editor_data = st.data_editor(
st.session_state.shared_input_data,
# key="meta_prompt_input_data",
num_rows="dynamic",
column_config={
"Input": st.column_config.TextColumn("Input", width="large"),
"Output": st.column_config.TextColumn("Output", width="large"),
},
hide_index=False,
use_container_width=True,
)
col1, col2 = st.columns(2)
with col1:
with st.expander("Advanced Inputs"):
initial_system_message = st.text_area(
"Initial System Message",
# "Default System Message",
# st.session_state.initial_system_message,
key="initial_system_message"
)
col1_1, col1_2 = st.columns(2)
with col1_1:
pull_sample_description_button = st.button("Pull Sample Description", key="pull_sample_description",
on_click=pull_sample_description)
with col1_2:
st.button("Pull Output", key="copy_system_message",
on_click=copy_system_message)
initial_acceptance_criteria = st.text_area(
"Acceptance Criteria",
# "Default Acceptance Criteria",
# st.session_state.initial_acceptance_criteria,
key="initial_acceptance_criteria"
)
st.button("Pull Output", key="copy_acceptance_criteria",
on_click=copy_acceptance_criteria)
col1_1, col1_2, col1_3 = st.columns(3)
with col1_1:
generate_button_clicked = st.button("Generate", key="generate_button",
on_click=generate_callback,
type="primary")
with col1_2:
sync_button_clicked = st.button("Sync Data", on_click=sync_input_data)
with col1_3:
clear_button_clicked = st.button("Clear", on_click=clear_session_state)
with col2:
system_message_output = st.text_area("System Message",
# st.session_state.system_message_output,
key="system_message_output",
height=100)
acceptance_criteria_output = st.text_area(
"Acceptance Criteria",
# st.session_state.acceptance_criteria_output,
key="acceptance_criteria_output",
height=100)
st.text_area("Output", st.session_state.output, height=100)
st.text_area("Analysis", st.session_state.analysis, height=100)
st.json(st.session_state.chat_log)
|