File size: 17,642 Bytes
76adccc
 
 
3368d8a
76adccc
 
fe75183
76adccc
 
fe75183
 
76adccc
 
 
f9ab7f7
fe75183
 
76adccc
 
fe75183
 
 
 
f9ab7f7
76adccc
3368d8a
f9ab7f7
fe75183
 
76adccc
 
fe75183
 
76adccc
f9ab7f7
 
 
 
76adccc
f9ab7f7
 
76adccc
fe75183
76adccc
 
fe75183
 
76adccc
 
 
 
f9ab7f7
 
fe75183
 
76adccc
 
fe75183
 
76adccc
fe75183
 
76adccc
 
f9ab7f7
 
fe75183
 
76adccc
 
fe75183
 
76adccc
fe75183
 
 
 
76adccc
 
f9ab7f7
 
fe75183
 
76adccc
 
fe75183
 
76adccc
fe75183
 
 
 
76adccc
 
f9ab7f7
 
76adccc
fe75183
3368d8a
 
 
2b661e2
 
 
 
 
 
 
 
 
3368d8a
 
 
fe75183
3368d8a
 
 
2b661e2
 
 
 
 
 
 
 
 
3368d8a
 
 
fe75183
3368d8a
 
 
2b661e2
 
 
 
 
 
 
 
3368d8a
 
 
 
76adccc
9a76340
 
e461e3a
76adccc
 
 
f9ab7f7
 
 
76adccc
 
 
 
 
 
 
fe75183
 
76adccc
 
fe75183
 
76adccc
 
fe75183
 
76adccc
3368d8a
 
 
fe75183
76adccc
e461e3a
f9ab7f7
 
 
fe75183
76adccc
 
fe75183
 
 
76adccc
 
fe75183
 
 
76adccc
 
e461e3a
fe75183
 
 
 
 
76adccc
 
e461e3a
fe75183
 
 
 
 
76adccc
 
e461e3a
fe75183
 
f9ab7f7
76adccc
f9ab7f7
fe75183
 
76adccc
 
fe75183
 
 
 
3368d8a
76adccc
e461e3a
 
 
 
 
dc824aa
 
 
 
 
 
 
 
 
 
 
 
 
 
2b661e2
9a76340
dc824aa
10d2343
dc824aa
f9ab7f7
10d2343
 
 
 
 
 
 
 
fe75183
4937eee
 
 
 
 
 
 
 
 
 
 
 
40e1bf4
 
 
 
 
 
db39ccb
9a76340
 
db39ccb
 
9a76340
db39ccb
 
 
 
 
 
 
 
 
76adccc
0e98df7
 
76adccc
 
e461e3a
9a76340
 
e461e3a
 
 
 
 
 
9a76340
e461e3a
 
0e98df7
dc824aa
 
 
 
 
 
 
 
 
 
 
 
 
0e98df7
 
 
 
 
 
 
 
e461e3a
db39ccb
 
 
 
 
 
9a76340
db39ccb
 
 
0e98df7
 
fe75183
 
0e98df7
 
 
 
4937eee
 
 
 
 
 
 
 
 
 
f9ab7f7
 
 
40e1bf4
f9ab7f7
 
 
ceeb5d2
 
 
0e98df7
2b661e2
9a76340
0e98df7
 
 
 
 
 
 
 
 
2b661e2
9a76340
76adccc
fe75183
9a76340
2b661e2
 
 
9a76340
 
2b661e2
0e98df7
 
 
 
9a76340
2b661e2
0e98df7
 
f9ab7f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import pandas as pd
import streamlit as st
import json
from langchain_openai import ChatOpenAI
from meta_prompt.sample_generator import TaskDescriptionGenerator


def process_json(input_json, model_name, generating_batch_size, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.process(input_json, generating_batch_size)
        description = result["description"]
        suggestions = result["suggestions"]
        examples_directly = [[example["input"], example["output"]]
                             for example in result["examples_directly"]["examples"]]
        input_analysis = result["examples_from_briefs"]["input_analysis"]
        new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
        examples_from_briefs = [[example["input"], example["output"]]
                                for example in result["examples_from_briefs"]["examples"]]
        examples = [[example["input"], example["output"]]
                    for example in result["additional_examples"]]
        return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}. Returning default values.")
        return "", [], [], "", [], [], []


def generate_description_only(input_json, model_name, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_description(input_json)
        description = result["description"]
        suggestions = result["suggestions"]
        return description, suggestions
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}")
        return "", []


def analyze_input(description, model_name, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        input_analysis = generator.analyze_input(description)
        return input_analysis
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}")
        return ""


def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        briefs = generator.generate_briefs(
            description, input_analysis, generating_batch_size)
        return briefs
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}")
        return ""


def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_examples_from_briefs(
            description, new_example_briefs, input_str, generating_batch_size)
        examples = [[example["input"], example["output"]]
                    for example in result["examples"]]
        return examples
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}")
        return []


def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature):
    try:
        model = ChatOpenAI(
            model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_examples_directly(
            description, raw_example, generating_batch_size)
        examples = [[example["input"], example["output"]]
                    for example in result["examples"]]
        return examples
    except Exception as e:
        st.warning(f"An error occurred: {str(e)}")
        return []


def example_directly_selected():
    if 'selected_example_directly_id' in st.session_state:
        try:
            selected_example_ids = st.session_state.selected_example_directly_id[
                'selection']['rows']
            # set selected examples to the selected rows if there are any
            if selected_example_ids:
                selected_examples = st.session_state.examples_directly_dataframe.iloc[selected_example_ids].to_dict(
                    'records')
                st.session_state.selected_example = pd.DataFrame(selected_examples)  # Convert to DataFrame
            else:
                st.session_state.selected_example = None
        except Exception as e:
            st.session_state.selected_example = None


def example_from_briefs_selected():
    if 'selected_example_from_briefs_id' in st.session_state:
        try:
            selected_example_ids = st.session_state.selected_example_from_briefs_id[
                'selection']['rows']
            # set selected examples to the selected rows if there are any
            if selected_example_ids:
                selected_examples = st.session_state.examples_from_briefs_dataframe.iloc[selected_example_ids].to_dict(
                    'records')
                st.session_state.selected_example = pd.DataFrame(selected_examples)  # Convert to DataFrame
            else:
                st.session_state.selected_example = None
        except Exception as e:
            st.session_state.selected_example = None


def example_selected():
    if 'selected_example_id' in st.session_state:
        try:
            selected_example_ids = st.session_state.selected_example_id['selection']['rows']
            # set selected examples to the selected rows if there are any
            if selected_example_ids:
                selected_examples = st.session_state.examples_dataframe.iloc[selected_example_ids].to_dict(
                    'records')
                st.session_state.selected_example = pd.DataFrame(selected_examples)  # Convert to DataFrame
            else:
                st.session_state.selected_example = None
        except Exception as e:
            st.session_state.selected_example = None


# Session State
if 'shared_input_data' not in st.session_state:
    st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])

if 'description_output_text' not in st.session_state:
    st.session_state.description_output_text = ''

if 'suggestions' not in st.session_state:
    st.session_state.suggestions = []

if 'input_analysis_output_text' not in st.session_state:
    st.session_state.input_analysis_output_text = ''

if 'example_briefs_output_text' not in st.session_state:
    st.session_state.example_briefs_output_text = ''

if 'examples_from_briefs_dataframe' not in st.session_state:
    st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=[
                                                                   "Input", "Output"])

if 'examples_directly_dataframe' not in st.session_state:
    st.session_state.examples_directly_dataframe = pd.DataFrame(
        columns=["Input", "Output"])

if 'examples_dataframe' not in st.session_state:
    st.session_state.examples_dataframe = pd.DataFrame(
        columns=["Input", "Output"])

if 'selected_example' not in st.session_state:
    st.session_state.selected_example = None


def update_description_output_text():
    input_json = package_input_data()
    result = generate_description_only(input_json, model_name, temperature)
    st.session_state.description_output_text = result[0]
    st.session_state.suggestions = result[1]


def update_input_analysis_output_text():
    st.session_state.input_analysis_output_text = analyze_input(
        description_output, model_name, temperature)


def update_example_briefs_output_text():
    st.session_state.example_briefs_output_text = generate_briefs(
        description_output, input_analysis_output, generating_batch_size, model_name, temperature)


def update_examples_from_briefs_dataframe():
    input_json = package_input_data()
    examples = generate_examples_from_briefs(
        description_output, example_briefs_output, input_json, generating_batch_size, model_name, temperature)
    st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
        examples, columns=["Input", "Output"])


def update_examples_directly_dataframe():
    input_json = package_input_data()
    examples = generate_examples_directly(
        description_output, input_json, generating_batch_size, model_name, temperature)
    st.session_state.examples_directly_dataframe = pd.DataFrame(
        examples, columns=["Input", "Output"])


def generate_examples_dataframe():
    input_json = package_input_data()
    result = process_json(input_json, model_name,
                          generating_batch_size, temperature)
    description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples = result
    st.session_state.description_output_text = description
    st.session_state.suggestions = suggestions  # Ensure suggestions are stored in session state
    st.session_state.examples_directly_dataframe = pd.DataFrame(
        examples_directly, columns=["Input", "Output"])
    st.session_state.input_analysis_output_text = input_analysis
    st.session_state.example_briefs_output_text = new_example_briefs
    st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
        examples_from_briefs, columns=["Input", "Output"])
    st.session_state.examples_dataframe = pd.DataFrame(
        examples, columns=["Input", "Output"])
    st.session_state.selected_example = None

def package_input_data():
    data = input_data.to_dict(orient='records')
    lowered_data = [{k.lower(): v for k, v in d.items()} for d in data]
    return json.dumps(lowered_data, ensure_ascii=False)

def export_input_data_to_json():
    input_data_json = package_input_data()
    st.download_button(
        label="Download input data as JSON",
        data=input_data_json,
        file_name="input_data.json",
        mime="application/json"
    )

def import_input_data_from_json():
    try:
        if 'input_file' in st.session_state and st.session_state.input_file is not None:
            data = st.session_state.input_file.getvalue()
            data = json.loads(data)
            data = [{k.capitalize(): v for k, v in d.items()} for d in data]
            st.session_state.shared_input_data = pd.DataFrame(data)
    except Exception as e:
        st.warning(f"Failed to import JSON: {str(e)}")

def apply_suggestions():
    try:
        result = TaskDescriptionGenerator(
            ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)).update_description(
            package_input_data(), st.session_state.description_output_text, st.session_state.selected_suggestions)
        st.session_state.description_output_text = result["description"]
        st.session_state.suggestions = result["suggestions"]
    except Exception as e:
        st.warning(f"Failed to update description: {str(e)}")

def generate_suggestions():
    try:
        description = st.session_state.description_output_text
        input_json = package_input_data()

        model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
        generator = TaskDescriptionGenerator(model)
        result = generator.generate_suggestions(input_json, description)
        st.session_state.suggestions = result["suggestions"]
    except Exception as e:
        st.warning(f"Failed to generate suggestions: {str(e)}")

# Function to add new suggestion to the list and select it
def add_new_suggestion():
    if st.session_state.new_suggestion:
        st.session_state.suggestions.append(st.session_state.new_suggestion)
        st.session_state.new_suggestion = ""  # Clear the input field

def sync_input_data():
    # st.session_state.meta_prompt_input_data = input_data.copy()
    st.session_state.shared_input_data = input_data.copy()

def clear_session_state():
    st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
    st.session_state.description_output_text = ''
    st.session_state.suggestions = []
    st.session_state.input_analysis_output_text = ''
    st.session_state.example_briefs_output_text = ''
    st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=["Input", "Output"])
    st.session_state.examples_directly_dataframe = pd.DataFrame(columns=["Input", "Output"])
    st.session_state.examples_dataframe = pd.DataFrame(columns=["Input", "Output"])
    st.session_state.selected_example = None

# Streamlit UI
st.title("LLM Task Example Generator")
st.markdown("Enter input-output pairs in the table below to generate a task description, analysis, and additional examples.")

# Input column
input_data = st.data_editor(
    st.session_state.shared_input_data,
    # key="sample_generator_input_data",
    num_rows="dynamic",
    use_container_width=True,
    column_config={
        "Input": st.column_config.TextColumn("Input", width="large"),
        "Output": st.column_config.TextColumn("Output", width="large"),
    },
    hide_index=False
)

with st.expander("Model Settings"):
    col1, col2 = st.columns(2)
    with col1:
        input_file = st.file_uploader(
            label="Import Input Data from JSON",
            type="json",
            key="input_file",
            on_change=import_input_data_from_json
        )
    with col2:
        export_button = st.button(  # Add the export button
            "Export Input Data to JSON", on_click=export_input_data_to_json
        )

    model_name = st.selectbox(
        "Model Name",
        ["llama3-70b-8192", "llama3-8b-8192", "llama-3.1-70b-versatile",
            "llama-3.1-8b-instant", "gemma2-9b-it"],
        index=0
    )
    temperature = st.slider("Temperature", 0.0, 1.0, 1.0, 0.1)
    generating_batch_size = st.slider("Generating Batch Size", 1, 10, 3, 1)

col1, col2, col3 = st.columns(3)
with col1:
    submit_button = st.button(
        "Generate", type="primary", on_click=generate_examples_dataframe)
with col2:
    sync_button = st.button(
        "Sync Data", on_click=sync_input_data)
with col3:
    clear_button = st.button(
        "Clear", on_click=clear_session_state)

with st.expander("Description and Analysis"):
    generate_description_button = st.button(
        "Generate Description", on_click=update_description_output_text)
    
    description_output = st.text_area(
        "Description", value=st.session_state.description_output_text, height=100)

    col3, col4, col5 = st.columns(3)
    with col3:
        generate_suggestions_button = st.button("Generate Suggestions", on_click=generate_suggestions)
    with col4:
        generate_examples_directly_button = st.button(
            "Generate Examples Directly", on_click=update_examples_directly_dataframe)
    with col5:
        analyze_input_button = st.button(
            "Analyze Input", on_click=update_input_analysis_output_text)

    # Add multiselect for suggestions
    selected_suggestions = st.multiselect(
        "Suggestions", options=st.session_state.suggestions, key="selected_suggestions")

    # Add button to apply suggestions
    apply_suggestions_button = st.button("Apply Suggestions", on_click=apply_suggestions)

    # Add text input for adding new suggestions
    new_suggestion = st.text_input("Add New Suggestion", key="new_suggestion", on_change=add_new_suggestion)

    examples_directly_output = st.dataframe(st.session_state.examples_directly_dataframe, use_container_width=True,
                                            selection_mode="multi-row", key="selected_example_directly_id",
                                            on_select=example_directly_selected, hide_index=False)
    input_analysis_output = st.text_area(
        "Input Analysis", value=st.session_state.input_analysis_output_text, height=100)
    generate_briefs_button = st.button(
        "Generate Briefs", on_click=update_example_briefs_output_text)
    example_briefs_output = st.text_area(
        "Example Briefs", value=st.session_state.example_briefs_output_text, height=100)
    generate_examples_from_briefs_button = st.button(
        "Generate Examples from Briefs", on_click=update_examples_from_briefs_dataframe)
    examples_from_briefs_output = st.dataframe(st.session_state.examples_from_briefs_dataframe, use_container_width=True,
                                               selection_mode="multi-row", key="selected_example_from_briefs_id",
                                               on_select=example_from_briefs_selected, hide_index=False)

examples_output = st.dataframe(st.session_state.examples_dataframe, use_container_width=True,
                               selection_mode="multi-row", key="selected_example_id", on_select=example_selected, hide_index=True)

def append_selected_to_input_data():
    if st.session_state.selected_example is not None:
        st.session_state.shared_input_data = pd.concat(
            [input_data, st.session_state.selected_example], ignore_index=True)
        st.session_state.selected_example = None

def show_sidebar():
    if st.session_state.selected_example is not None:
        with st.sidebar:
            st.dataframe(st.session_state.selected_example, hide_index=False)  # Display DataFrame in sidebar
            st.button("Append to Input Data", on_click=append_selected_to_input_data)

show_sidebar()