Spaces:
Sleeping
Sleeping
File size: 17,642 Bytes
76adccc 3368d8a 76adccc fe75183 76adccc fe75183 76adccc f9ab7f7 fe75183 76adccc fe75183 f9ab7f7 76adccc 3368d8a f9ab7f7 fe75183 76adccc fe75183 76adccc f9ab7f7 76adccc f9ab7f7 76adccc fe75183 76adccc fe75183 76adccc f9ab7f7 fe75183 76adccc fe75183 76adccc fe75183 76adccc f9ab7f7 fe75183 76adccc fe75183 76adccc fe75183 76adccc f9ab7f7 fe75183 76adccc fe75183 76adccc fe75183 76adccc f9ab7f7 76adccc fe75183 3368d8a 2b661e2 3368d8a fe75183 3368d8a 2b661e2 3368d8a fe75183 3368d8a 2b661e2 3368d8a 76adccc 9a76340 e461e3a 76adccc f9ab7f7 76adccc fe75183 76adccc fe75183 76adccc fe75183 76adccc 3368d8a fe75183 76adccc e461e3a f9ab7f7 fe75183 76adccc fe75183 76adccc fe75183 76adccc e461e3a fe75183 76adccc e461e3a fe75183 76adccc e461e3a fe75183 f9ab7f7 76adccc f9ab7f7 fe75183 76adccc fe75183 3368d8a 76adccc e461e3a dc824aa 2b661e2 9a76340 dc824aa 10d2343 dc824aa f9ab7f7 10d2343 fe75183 4937eee 40e1bf4 db39ccb 9a76340 db39ccb 9a76340 db39ccb 76adccc 0e98df7 76adccc e461e3a 9a76340 e461e3a 9a76340 e461e3a 0e98df7 dc824aa 0e98df7 e461e3a db39ccb 9a76340 db39ccb 0e98df7 fe75183 0e98df7 4937eee f9ab7f7 40e1bf4 f9ab7f7 ceeb5d2 0e98df7 2b661e2 9a76340 0e98df7 2b661e2 9a76340 76adccc fe75183 9a76340 2b661e2 9a76340 2b661e2 0e98df7 9a76340 2b661e2 0e98df7 f9ab7f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import pandas as pd
import streamlit as st
import json
from langchain_openai import ChatOpenAI
from meta_prompt.sample_generator import TaskDescriptionGenerator
def process_json(input_json, model_name, generating_batch_size, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.process(input_json, generating_batch_size)
description = result["description"]
suggestions = result["suggestions"]
examples_directly = [[example["input"], example["output"]]
for example in result["examples_directly"]["examples"]]
input_analysis = result["examples_from_briefs"]["input_analysis"]
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
examples_from_briefs = [[example["input"], example["output"]]
for example in result["examples_from_briefs"]["examples"]]
examples = [[example["input"], example["output"]]
for example in result["additional_examples"]]
return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}. Returning default values.")
return "", [], [], "", [], [], []
def generate_description_only(input_json, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_description(input_json)
description = result["description"]
suggestions = result["suggestions"]
return description, suggestions
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return "", []
def analyze_input(description, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
input_analysis = generator.analyze_input(description)
return input_analysis
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return ""
def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
briefs = generator.generate_briefs(
description, input_analysis, generating_batch_size)
return briefs
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return ""
def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_from_briefs(
description, new_example_briefs, input_str, generating_batch_size)
examples = [[example["input"], example["output"]]
for example in result["examples"]]
return examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return []
def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_directly(
description, raw_example, generating_batch_size)
examples = [[example["input"], example["output"]]
for example in result["examples"]]
return examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return []
def example_directly_selected():
if 'selected_example_directly_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_directly_id[
'selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_directly_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
def example_from_briefs_selected():
if 'selected_example_from_briefs_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_from_briefs_id[
'selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_from_briefs_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
def example_selected():
if 'selected_example_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_id['selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
# Session State
if 'shared_input_data' not in st.session_state:
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
if 'description_output_text' not in st.session_state:
st.session_state.description_output_text = ''
if 'suggestions' not in st.session_state:
st.session_state.suggestions = []
if 'input_analysis_output_text' not in st.session_state:
st.session_state.input_analysis_output_text = ''
if 'example_briefs_output_text' not in st.session_state:
st.session_state.example_briefs_output_text = ''
if 'examples_from_briefs_dataframe' not in st.session_state:
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=[
"Input", "Output"])
if 'examples_directly_dataframe' not in st.session_state:
st.session_state.examples_directly_dataframe = pd.DataFrame(
columns=["Input", "Output"])
if 'examples_dataframe' not in st.session_state:
st.session_state.examples_dataframe = pd.DataFrame(
columns=["Input", "Output"])
if 'selected_example' not in st.session_state:
st.session_state.selected_example = None
def update_description_output_text():
input_json = package_input_data()
result = generate_description_only(input_json, model_name, temperature)
st.session_state.description_output_text = result[0]
st.session_state.suggestions = result[1]
def update_input_analysis_output_text():
st.session_state.input_analysis_output_text = analyze_input(
description_output, model_name, temperature)
def update_example_briefs_output_text():
st.session_state.example_briefs_output_text = generate_briefs(
description_output, input_analysis_output, generating_batch_size, model_name, temperature)
def update_examples_from_briefs_dataframe():
input_json = package_input_data()
examples = generate_examples_from_briefs(
description_output, example_briefs_output, input_json, generating_batch_size, model_name, temperature)
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
def update_examples_directly_dataframe():
input_json = package_input_data()
examples = generate_examples_directly(
description_output, input_json, generating_batch_size, model_name, temperature)
st.session_state.examples_directly_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
def generate_examples_dataframe():
input_json = package_input_data()
result = process_json(input_json, model_name,
generating_batch_size, temperature)
description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples = result
st.session_state.description_output_text = description
st.session_state.suggestions = suggestions # Ensure suggestions are stored in session state
st.session_state.examples_directly_dataframe = pd.DataFrame(
examples_directly, columns=["Input", "Output"])
st.session_state.input_analysis_output_text = input_analysis
st.session_state.example_briefs_output_text = new_example_briefs
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
examples_from_briefs, columns=["Input", "Output"])
st.session_state.examples_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
st.session_state.selected_example = None
def package_input_data():
data = input_data.to_dict(orient='records')
lowered_data = [{k.lower(): v for k, v in d.items()} for d in data]
return json.dumps(lowered_data, ensure_ascii=False)
def export_input_data_to_json():
input_data_json = package_input_data()
st.download_button(
label="Download input data as JSON",
data=input_data_json,
file_name="input_data.json",
mime="application/json"
)
def import_input_data_from_json():
try:
if 'input_file' in st.session_state and st.session_state.input_file is not None:
data = st.session_state.input_file.getvalue()
data = json.loads(data)
data = [{k.capitalize(): v for k, v in d.items()} for d in data]
st.session_state.shared_input_data = pd.DataFrame(data)
except Exception as e:
st.warning(f"Failed to import JSON: {str(e)}")
def apply_suggestions():
try:
result = TaskDescriptionGenerator(
ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)).update_description(
package_input_data(), st.session_state.description_output_text, st.session_state.selected_suggestions)
st.session_state.description_output_text = result["description"]
st.session_state.suggestions = result["suggestions"]
except Exception as e:
st.warning(f"Failed to update description: {str(e)}")
def generate_suggestions():
try:
description = st.session_state.description_output_text
input_json = package_input_data()
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_suggestions(input_json, description)
st.session_state.suggestions = result["suggestions"]
except Exception as e:
st.warning(f"Failed to generate suggestions: {str(e)}")
# Function to add new suggestion to the list and select it
def add_new_suggestion():
if st.session_state.new_suggestion:
st.session_state.suggestions.append(st.session_state.new_suggestion)
st.session_state.new_suggestion = "" # Clear the input field
def sync_input_data():
# st.session_state.meta_prompt_input_data = input_data.copy()
st.session_state.shared_input_data = input_data.copy()
def clear_session_state():
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
st.session_state.description_output_text = ''
st.session_state.suggestions = []
st.session_state.input_analysis_output_text = ''
st.session_state.example_briefs_output_text = ''
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=["Input", "Output"])
st.session_state.examples_directly_dataframe = pd.DataFrame(columns=["Input", "Output"])
st.session_state.examples_dataframe = pd.DataFrame(columns=["Input", "Output"])
st.session_state.selected_example = None
# Streamlit UI
st.title("LLM Task Example Generator")
st.markdown("Enter input-output pairs in the table below to generate a task description, analysis, and additional examples.")
# Input column
input_data = st.data_editor(
st.session_state.shared_input_data,
# key="sample_generator_input_data",
num_rows="dynamic",
use_container_width=True,
column_config={
"Input": st.column_config.TextColumn("Input", width="large"),
"Output": st.column_config.TextColumn("Output", width="large"),
},
hide_index=False
)
with st.expander("Model Settings"):
col1, col2 = st.columns(2)
with col1:
input_file = st.file_uploader(
label="Import Input Data from JSON",
type="json",
key="input_file",
on_change=import_input_data_from_json
)
with col2:
export_button = st.button( # Add the export button
"Export Input Data to JSON", on_click=export_input_data_to_json
)
model_name = st.selectbox(
"Model Name",
["llama3-70b-8192", "llama3-8b-8192", "llama-3.1-70b-versatile",
"llama-3.1-8b-instant", "gemma2-9b-it"],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 1.0, 0.1)
generating_batch_size = st.slider("Generating Batch Size", 1, 10, 3, 1)
col1, col2, col3 = st.columns(3)
with col1:
submit_button = st.button(
"Generate", type="primary", on_click=generate_examples_dataframe)
with col2:
sync_button = st.button(
"Sync Data", on_click=sync_input_data)
with col3:
clear_button = st.button(
"Clear", on_click=clear_session_state)
with st.expander("Description and Analysis"):
generate_description_button = st.button(
"Generate Description", on_click=update_description_output_text)
description_output = st.text_area(
"Description", value=st.session_state.description_output_text, height=100)
col3, col4, col5 = st.columns(3)
with col3:
generate_suggestions_button = st.button("Generate Suggestions", on_click=generate_suggestions)
with col4:
generate_examples_directly_button = st.button(
"Generate Examples Directly", on_click=update_examples_directly_dataframe)
with col5:
analyze_input_button = st.button(
"Analyze Input", on_click=update_input_analysis_output_text)
# Add multiselect for suggestions
selected_suggestions = st.multiselect(
"Suggestions", options=st.session_state.suggestions, key="selected_suggestions")
# Add button to apply suggestions
apply_suggestions_button = st.button("Apply Suggestions", on_click=apply_suggestions)
# Add text input for adding new suggestions
new_suggestion = st.text_input("Add New Suggestion", key="new_suggestion", on_change=add_new_suggestion)
examples_directly_output = st.dataframe(st.session_state.examples_directly_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_directly_id",
on_select=example_directly_selected, hide_index=False)
input_analysis_output = st.text_area(
"Input Analysis", value=st.session_state.input_analysis_output_text, height=100)
generate_briefs_button = st.button(
"Generate Briefs", on_click=update_example_briefs_output_text)
example_briefs_output = st.text_area(
"Example Briefs", value=st.session_state.example_briefs_output_text, height=100)
generate_examples_from_briefs_button = st.button(
"Generate Examples from Briefs", on_click=update_examples_from_briefs_dataframe)
examples_from_briefs_output = st.dataframe(st.session_state.examples_from_briefs_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_from_briefs_id",
on_select=example_from_briefs_selected, hide_index=False)
examples_output = st.dataframe(st.session_state.examples_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_id", on_select=example_selected, hide_index=True)
def append_selected_to_input_data():
if st.session_state.selected_example is not None:
st.session_state.shared_input_data = pd.concat(
[input_data, st.session_state.selected_example], ignore_index=True)
st.session_state.selected_example = None
def show_sidebar():
if st.session_state.selected_example is not None:
with st.sidebar:
st.dataframe(st.session_state.selected_example, hide_index=False) # Display DataFrame in sidebar
st.button("Append to Input Data", on_click=append_selected_to_input_data)
show_sidebar()
|