Spaces:
Sleeping
Sleeping
File size: 32,713 Bytes
48f5e34 ac0b1c8 48f5e34 ac0b1c8 48f5e34 ac0b1c8 48f5e34 aaa4147 48f5e34 ac0b1c8 48f5e34 ac0b1c8 48f5e34 ac0b1c8 aaa4147 ac0b1c8 48f5e34 aaa4147 48f5e34 aaa4147 48f5e34 aaa4147 48f5e34 aaa4147 48f5e34 aaa4147 48f5e34 aaa4147 48f5e34 aaa4147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
import pandas as pd
import streamlit as st
import json
from app.meta_prompt_utils import *
from meta_prompt.sample_generator import TaskDescriptionGenerator
# Initialize session state
def init_session_state():
if 'shared_input_data' not in st.session_state:
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
if 'initial_system_message' not in st.session_state:
st.session_state.initial_system_message = ""
if 'initial_acceptance_criteria' not in st.session_state:
st.session_state.initial_acceptance_criteria = ""
if 'system_message_output' not in st.session_state:
st.session_state.system_message_output = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'analysis' not in st.session_state:
st.session_state.analysis = ""
if 'acceptance_criteria_output' not in st.session_state:
st.session_state.acceptance_criteria_output = ""
if 'chat_log' not in st.session_state:
st.session_state.chat_log = []
if 'description_output_text' not in st.session_state:
st.session_state.description_output_text = ''
if 'suggestions' not in st.session_state:
st.session_state.suggestions = []
if 'input_analysis_output_text' not in st.session_state:
st.session_state.input_analysis_output_text = ''
if 'example_briefs_output_text' not in st.session_state:
st.session_state.example_briefs_output_text = ''
if 'examples_from_briefs_dataframe' not in st.session_state:
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=["Input", "Output"])
if 'examples_directly_dataframe' not in st.session_state:
st.session_state.examples_directly_dataframe = pd.DataFrame(columns=["Input", "Output"])
if 'examples_dataframe' not in st.session_state:
st.session_state.examples_dataframe = pd.DataFrame(columns=["Input", "Output"])
if 'selected_example' not in st.session_state:
st.session_state.selected_example = None
# UI helper functions
def clear_session_state():
for key in list(st.session_state.keys()):
del st.session_state[key]
init_session_state()
def sync_input_data():
st.session_state.shared_input_data = st.session_state.data_editor_data.copy()
# Sample Generator Functions
def process_json(input_json, model_name, generating_batch_size, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.process(input_json, generating_batch_size)
description = result["description"]
suggestions = result["suggestions"]
examples_directly = [[example["input"], example["output"]]
for example in result["examples_directly"]["examples"]]
input_analysis = result["examples_from_briefs"]["input_analysis"]
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
examples_from_briefs = [[example["input"], example["output"]]
for example in result["examples_from_briefs"]["examples"]]
examples = [[example["input"], example["output"]]
for example in result["additional_examples"]]
return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}. Returning default values.")
return "", [], [], "", [], [], []
def generate_description_only(input_json, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_description(input_json)
description = result["description"]
suggestions = result["suggestions"]
return description, suggestions
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return "", []
def analyze_input(description, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
input_analysis = generator.analyze_input(description)
return input_analysis
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return ""
def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
briefs = generator.generate_briefs(
description, input_analysis, generating_batch_size)
return briefs
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return ""
def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_from_briefs(
description, new_example_briefs, input_str, generating_batch_size)
examples = [[example["input"], example["output"]]
for example in result["examples"]]
return examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return []
def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature):
try:
model = ChatOpenAI(
model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_directly(
description, raw_example, generating_batch_size)
examples = [[example["input"], example["output"]]
for example in result["examples"]]
return examples
except Exception as e:
st.warning(f"An error occurred: {str(e)}")
return []
def example_directly_selected():
if 'selected_example_directly_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_directly_id[
'selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_directly_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
def example_from_briefs_selected():
if 'selected_example_from_briefs_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_from_briefs_id[
'selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_from_briefs_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
def example_selected():
if 'selected_example_id' in st.session_state:
try:
selected_example_ids = st.session_state.selected_example_id['selection']['rows']
# set selected examples to the selected rows if there are any
if selected_example_ids:
selected_examples = st.session_state.examples_dataframe.iloc[selected_example_ids].to_dict(
'records')
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame
else:
st.session_state.selected_example = None
except Exception as e:
st.session_state.selected_example = None
def update_description_output_text():
input_json = package_input_data()
result = generate_description_only(input_json, model_name, temperature)
st.session_state.description_output_text = result[0]
st.session_state.suggestions = result[1]
def update_input_analysis_output_text():
st.session_state.input_analysis_output_text = analyze_input(
description_output, model_name, temperature)
def update_example_briefs_output_text():
st.session_state.example_briefs_output_text = generate_briefs(
description_output, input_analysis_output, generating_batch_size, model_name, temperature)
def update_examples_from_briefs_dataframe():
input_json = package_input_data()
examples = generate_examples_from_briefs(
description_output, example_briefs_output, input_json, generating_batch_size, model_name, temperature)
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
def update_examples_directly_dataframe():
input_json = package_input_data()
examples = generate_examples_directly(
description_output, input_json, generating_batch_size, model_name, temperature)
st.session_state.examples_directly_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
def generate_examples_dataframe():
input_json = package_input_data()
result = process_json(input_json, model_name,
generating_batch_size, temperature)
description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples = result
st.session_state.description_output_text = description
st.session_state.suggestions = suggestions # Ensure suggestions are stored in session state
st.session_state.examples_directly_dataframe = pd.DataFrame(
examples_directly, columns=["Input", "Output"])
st.session_state.input_analysis_output_text = input_analysis
st.session_state.example_briefs_output_text = new_example_briefs
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(
examples_from_briefs, columns=["Input", "Output"])
st.session_state.examples_dataframe = pd.DataFrame(
examples, columns=["Input", "Output"])
st.session_state.selected_example = None
def package_input_data():
data = data_editor_data.to_dict(orient='records')
lowered_data = [{k.lower(): v for k, v in d.items()} for d in data]
return json.dumps(lowered_data, ensure_ascii=False)
def export_input_data_to_json():
input_data_json = package_input_data()
st.download_button(
label="Download input data as JSON",
data=input_data_json,
file_name="input_data.json",
mime="application/json"
)
def import_input_data_from_json():
try:
if 'input_file' in st.session_state and st.session_state.input_file is not None:
data = st.session_state.input_file.getvalue()
data = json.loads(data)
data = [{k.capitalize(): v for k, v in d.items()} for d in data]
st.session_state.shared_input_data = pd.DataFrame(data)
except Exception as e:
st.warning(f"Failed to import JSON: {str(e)}")
def apply_suggestions():
try:
result = TaskDescriptionGenerator(
ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)).update_description(
package_input_data(), st.session_state.description_output_text, st.session_state.selected_suggestions)
st.session_state.description_output_text = result["description"]
st.session_state.suggestions = result["suggestions"]
except Exception as e:
st.warning(f"Failed to update description: {str(e)}")
def generate_suggestions():
try:
description = st.session_state.description_output_text
input_json = package_input_data()
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
generator = TaskDescriptionGenerator(model)
result = generator.generate_suggestions(input_json, description)
st.session_state.suggestions = result["suggestions"]
except Exception as e:
st.warning(f"Failed to generate suggestions: {str(e)}")
# Function to add new suggestion to the list and select it
def add_new_suggestion():
if st.session_state.new_suggestion:
st.session_state.suggestions.append(st.session_state.new_suggestion)
st.session_state.new_suggestion = "" # Clear the input field
def append_selected_to_input_data():
if st.session_state.selected_example is not None:
st.session_state.shared_input_data = pd.concat(
[data_editor_data, st.session_state.selected_example], ignore_index=True)
st.session_state.selected_example = None
def show_scoping_sidebar():
if st.session_state.selected_example is not None:
with st.sidebar:
st.dataframe(st.session_state.selected_example, hide_index=False)
st.button("Append to Input Data", on_click=append_selected_to_input_data)
# Meta Prompt Functions
def process_message_with_single_llm(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
model_name: str, prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False, config: MetaPromptConfig = None
) -> tuple:
llm = initialize_llm(model_name, config=config)
return process_message(
user_message, expected_output, acceptance_criteria, initial_system_message,
recursion_limit, max_output_age, llm, prompt_template_group, aggressive_exploration,
config
)
def process_message_with_2_llms(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
optimizer_model_name: str, executor_model_name: str,
prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False, config: MetaPromptConfig = None
) -> tuple:
optimizer_model = initialize_llm(optimizer_model_name, config=config)
executor_model = initialize_llm(executor_model_name, config=config)
llms = {
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: optimizer_model,
NODE_PROMPT_INITIAL_DEVELOPER: optimizer_model,
NODE_PROMPT_DEVELOPER: optimizer_model,
NODE_PROMPT_EXECUTOR: executor_model,
NODE_OUTPUT_HISTORY_ANALYZER: optimizer_model,
NODE_PROMPT_ANALYZER: optimizer_model,
NODE_PROMPT_SUGGESTER: optimizer_model
}
return process_message(
user_message, expected_output, acceptance_criteria,
initial_system_message, recursion_limit, max_output_age, llms,
prompt_template_group, aggressive_exploration, config
)
def process_message_with_expert_llms(
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
initial_developer_model_name: str, initial_developer_temperature: float,
acceptance_criteria_model_name: str, acceptance_criteria_temperature: float,
developer_model_name: str, developer_temperature: float,
executor_model_name: str, executor_temperature: float,
output_history_analyzer_model_name: str, output_history_analyzer_temperature: float,
analyzer_model_name: str, analyzer_temperature: float,
suggester_model_name: str, suggester_temperature: float,
prompt_template_group: Optional[str] = None, aggressive_exploration: bool = False,
config: MetaPromptConfig = None
) -> tuple:
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(
initial_developer_model_name, {"temperature": initial_developer_temperature}, config
),
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(
acceptance_criteria_model_name, {"temperature": acceptance_criteria_temperature}, config
),
NODE_PROMPT_DEVELOPER: initialize_llm(
developer_model_name, {"temperature": developer_temperature}, config
),
NODE_PROMPT_EXECUTOR: initialize_llm(
executor_model_name, {"temperature": executor_temperature}, config
),
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(
output_history_analyzer_model_name,
{"temperature": output_history_analyzer_temperature},
config
),
NODE_PROMPT_ANALYZER: initialize_llm(
analyzer_model_name, {"temperature": analyzer_temperature}, config
),
NODE_PROMPT_SUGGESTER: initialize_llm(
suggester_model_name, {"temperature": suggester_temperature}, config
)
}
return process_message(
user_message,
expected_output,
acceptance_criteria,
initial_system_message,
recursion_limit,
max_output_age,
llms,
prompt_template_group,
aggressive_exploration,
config
)
def copy_system_message():
st.session_state.initial_system_message = system_message_output
def copy_acceptance_criteria():
st.session_state.initial_acceptance_criteria = acceptance_criteria_output
def clear_session_state():
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"])
st.session_state.initial_system_message = ""
st.session_state.initial_acceptance_criteria = ""
st.session_state.system_message_output = ""
st.session_state.output = ""
st.session_state.analysis = ""
st.session_state.acceptance_criteria_output = ""
st.session_state.chat_log = []
def pull_sample_description():
st.session_state.initial_system_message = description_output
def update_working_sample_options():
pass
def generate_callback():
try:
# Get the index of the selected sample
selected_index = selected_sample.split(":")[0].split()[1]
selected_index = int(selected_index)
user_message = data_editor_data.loc[selected_index, "Input"].strip()
expected_output = data_editor_data.loc[selected_index, "Output"].strip()
input_acceptance_criteria = initial_acceptance_criteria.strip()
input_system_message = initial_system_message.strip()
if model_tab == "Simple":
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_single_llm(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit_input,
max_output_age_input,
simple_model_name_input,
prompt_template_group_input,
aggressive_exploration_input,
config=config
)
elif model_tab == "Advanced":
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_2_llms(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit_input,
max_output_age_input,
advanced_optimizer_model_name_input,
advanced_executor_model_name_input,
prompt_template_group_input,
aggressive_exploration_input,
config=config
)
else: # Expert
system_message, output, analysis, acceptance_criteria, chat_log = process_message_with_expert_llms(
user_message,
expected_output,
input_acceptance_criteria,
input_system_message,
recursion_limit_input,
max_output_age_input,
expert_prompt_initial_developer_model_name_input,
expert_prompt_initial_developer_temperature_input,
expert_prompt_acceptance_criteria_model_name_input,
expert_prompt_acceptance_criteria_temperature_input,
expert_prompt_developer_model_name_input,
expert_prompt_developer_temperature_input,
expert_prompt_executor_model_name_input,
expert_prompt_executor_temperature_input,
expert_prompt_output_history_analyzer_model_name_input,
expert_prompt_output_history_analyzer_temperature_input,
expert_prompt_analyzer_model_name_input,
expert_prompt_analyzer_temperature_input,
expert_prompt_suggester_model_name_input,
expert_prompt_suggester_temperature_input,
prompt_template_group_input,
aggressive_exploration_input,
config=config
)
st.session_state.system_message_output = system_message
st.session_state.output = output
st.session_state.analysis = analysis
st.session_state.acceptance_criteria_output = acceptance_criteria
st.session_state.chat_log = chat_log
except Exception as e:
st.error(f"Error: {e}")
def clear_advanced_inputs():
st.session_state.initial_system_message = ""
st.session_state.initial_acceptance_criteria = ""
# Meta Prompt Config
pre_config_sources = [
EnvSource(prefix='METAPROMPT_', allow_all=True),
CLArgSource()
]
pre_config = FileConfig(config_sources=pre_config_sources)
# Load configuration
config = MetaPromptConfig(config_sources=[
FileSource(file=pre_config.config_file, optional=True),
EnvSource(prefix='METAPROMPT_', allow_all=True),
CLArgSource()
])
# Initialize session state
init_session_state()
# Streamlit UI
st.title("Meta Prompt")
st.markdown("Enter input-output pairs as the examples for the prompt.")
data_editor_data = st.data_editor(
st.session_state.shared_input_data,
key="data_editor",
num_rows="dynamic",
column_config={
"Input": st.column_config.TextColumn("Input", width="large"),
"Output": st.column_config.TextColumn("Output", width="large"),
},
hide_index=False,
use_container_width=True,
on_change=update_working_sample_options
)
with st.expander("Data Management"):
input_file = st.file_uploader(
label="Import Input Data from JSON",
type="json",
key="input_file",
on_change=import_input_data_from_json
)
export_button = st.button( # Add the export button
"Export Input Data to JSON", on_click=export_input_data_to_json
)
tab_scoping, tab_prompting = st.tabs(["Scope", "Prompt"])
with tab_scoping:
# Streamlit UI
st.markdown("Define the task scope using the above input-output pairs.")
submit_button = st.button(
"Go", type="primary", on_click=generate_examples_dataframe,
use_container_width=True)
with st.expander("Model Settings"):
model_name = st.selectbox(
"Model Name",
["llama3-70b-8192", "llama3-8b-8192", "llama-3.1-70b-versatile",
"llama-3.1-8b-instant", "gemma2-9b-it"],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 1.0, 0.1)
generating_batch_size = st.slider("Generating Batch Size", 1, 10, 3, 1)
with st.expander("Description and Analysis"):
generate_description_button = st.button(
"Generate Description", on_click=update_description_output_text)
description_output = st.text_area(
"Description", value=st.session_state.description_output_text, height=100)
col3, col4, col5 = st.columns(3)
with col3:
generate_suggestions_button = st.button("Generate Suggestions", on_click=generate_suggestions)
with col4:
generate_examples_directly_button = st.button(
"Generate Examples Directly", on_click=update_examples_directly_dataframe)
with col5:
analyze_input_button = st.button(
"Analyze Input", on_click=update_input_analysis_output_text)
# Add multiselect for suggestions
selected_suggestions = st.multiselect(
"Suggestions", options=st.session_state.suggestions, key="selected_suggestions")
# Add button to apply suggestions
apply_suggestions_button = st.button("Apply Suggestions", on_click=apply_suggestions)
# Add text input for adding new suggestions
new_suggestion = st.text_input("Add New Suggestion", key="new_suggestion", on_change=add_new_suggestion)
examples_directly_output = st.dataframe(st.session_state.examples_directly_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_directly_id",
on_select=example_directly_selected, hide_index=False)
input_analysis_output = st.text_area(
"Input Analysis", value=st.session_state.input_analysis_output_text, height=100)
generate_briefs_button = st.button(
"Generate Briefs", on_click=update_example_briefs_output_text)
example_briefs_output = st.text_area(
"Example Briefs", value=st.session_state.example_briefs_output_text, height=100)
generate_examples_from_briefs_button = st.button(
"Generate Examples from Briefs", on_click=update_examples_from_briefs_dataframe)
examples_from_briefs_output = st.dataframe(st.session_state.examples_from_briefs_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_from_briefs_id",
on_select=example_from_briefs_selected, hide_index=False)
examples_output = st.dataframe(st.session_state.examples_dataframe, use_container_width=True,
selection_mode="multi-row", key="selected_example_id", on_select=example_selected, hide_index=True)
show_scoping_sidebar()
with tab_prompting:
# Prompting UI
st.markdown("Generate the prompt with the above input-output pairs.")
# Create options for the selectbox
try:
sample_options = [f"Sample {i}: {row['Input'][:30]}..." for i, row in data_editor_data.iterrows()]
except Exception as e:
sample_options = []
# Create the selectbox
selected_sample = st.selectbox(
"Working Sample",
options=sample_options,
index=0,
# key="working_sample"
)
generate_button_clicked = st.button("Generate", key="generate_button",
on_click=generate_callback,
type="primary", use_container_width=True)
with st.expander("Advanced Inputs"):
initial_system_message = st.text_area(
"Initial System Message",
key="initial_system_message",
height=200,
placeholder="Enter the initial system message. It will be used as the base message for the prompt."
)
col1_1, col1_2 = st.columns(2)
with col1_1:
pull_sample_description_button = st.button("Pull Scope Description", key="pull_sample_description",
on_click=pull_sample_description)
with col1_2:
st.button("Pull Output", key="copy_system_message",
on_click=copy_system_message)
initial_acceptance_criteria = st.text_area(
"Acceptance Criteria",
key="initial_acceptance_criteria",
height=200,
placeholder="Enter the acceptance criteria. It will be used to evaluate the output."
)
st.button("Pull Output", key="copy_acceptance_criteria",
on_click=copy_acceptance_criteria)
st.button("Clear", on_click=clear_advanced_inputs)
# New expander for model settings
with st.expander("Model Settings"):
model_tab = st.selectbox("Select Model Type", ["Simple", "Advanced", "Expert"], key="model_tab")
if model_tab == "Simple":
simple_model_name_input = st.selectbox(
"Model Name",
config.llms.keys(),
index=0,
)
elif model_tab == "Advanced":
advanced_optimizer_model_name_input = st.selectbox(
"Optimizer Model Name",
config.llms.keys(),
index=0,
)
advanced_executor_model_name_input = st.selectbox(
"Executor Model Name",
config.llms.keys(),
index=1,
)
else: # Expert
expert_prompt_initial_developer_model_name_input = st.selectbox(
"Initial Developer Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_initial_developer_temperature_input = st.slider(
"Initial Developer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_acceptance_criteria_model_name_input = st.selectbox(
"Acceptance Criteria Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_acceptance_criteria_temperature_input = st.slider(
"Acceptance Criteria Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_developer_model_name_input = st.selectbox(
"Developer Model Name", config.llms.keys(), index=0
)
expert_prompt_developer_temperature_input = st.slider(
"Developer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_executor_model_name_input = st.selectbox(
"Executor Model Name", config.llms.keys(), index=1
)
expert_prompt_executor_temperature_input = st.slider(
"Executor Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_output_history_analyzer_model_name_input = st.selectbox(
"Output History Analyzer Model Name",
config.llms.keys(),
index=0,
)
expert_prompt_output_history_analyzer_temperature_input = st.slider(
"Output History Analyzer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_analyzer_model_name_input = st.selectbox(
"Analyzer Model Name", config.llms.keys(), index=0
)
expert_prompt_analyzer_temperature_input = st.slider(
"Analyzer Temperature", 0.0, 1.0, 0.1, 0.1
)
expert_prompt_suggester_model_name_input = st.selectbox(
"Suggester Model Name", config.llms.keys(), index=0
)
expert_prompt_suggester_temperature_input = st.slider(
"Suggester Temperature", 0.0, 1.0, 0.1, 0.1
)
prompt_template_group_input = st.selectbox(
"Prompt Template Group", config.prompt_templates.keys(), index=0
)
recursion_limit_input = st.number_input("Recursion Limit", 1, 100, 16, 1)
max_output_age_input = st.number_input("Max Output Age", 1, 10, 2, 1)
aggressive_exploration_input = st.checkbox("Aggressive Exploration", False)
system_message_output = st.text_area(
"System Message",
key="system_message_output",
height=200,
placeholder="The generated system message will be shown here."
)
acceptance_criteria_output = st.text_area(
"Acceptance Criteria",
key="acceptance_criteria_output",
height=200,
placeholder="The (generated) acceptance criteria will be shown here."
)
output_output = st.text_area(
"Output", st.session_state.output, height=200,
placeholder="The output generated by the system message will be shown here."
)
analysis_output = st.text_area(
"Analysis", st.session_state.analysis, height=200,
placeholder="The analysis of the output will be shown here."
)
st.json(st.session_state.chat_log, expanded=False)
|