Spaces:
Running
Running
File size: 16,357 Bytes
fcaac18 e5e33ac f41c216 b7f160b fcaac18 675dd1e 62fb408 f41c216 a291864 675dd1e fcaac18 2d1b8d7 fcaac18 e8de3ce fcaac18 e8de3ce f41c216 e8de3ce 0e80df8 fcaac18 0e80df8 fcaac18 f41c216 fcaac18 675dd1e fcaac18 f41c216 ec72229 f41c216 fcaac18 e8de3ce fcaac18 e8de3ce f41c216 e8de3ce 0e80df8 fcaac18 0e80df8 fcaac18 f41c216 fcaac18 f41c216 ec72229 f41c216 ec72229 f41c216 ec72229 f41c216 fcaac18 e8de3ce fcaac18 e8de3ce f41c216 e8de3ce f41c216 e8de3ce 0e80df8 f41c216 ec72229 f41c216 fcaac18 ec72229 fcaac18 e8de3ce 675dd1e e8de3ce f41c216 e8de3ce 675dd1e e8de3ce fcaac18 e8de3ce a291864 fcaac18 a291864 0e80df8 a291864 2d1b8d7 f41c216 ec72229 f41c216 2d1b8d7 f41c216 2d1b8d7 f41c216 a291864 2d1b8d7 f41c216 2d1b8d7 e8de3ce 2d1b8d7 e8de3ce f41c216 a291864 f41c216 a291864 f41c216 2d1b8d7 fcaac18 675dd1e b090732 675dd1e a291864 f41c216 fcaac18 2d1b8d7 fcaac18 ec72229 fcaac18 f41c216 b090732 f41c216 fcaac18 f41c216 2d1b8d7 f41c216 2d1b8d7 f41c216 2d1b8d7 e8de3ce 2d1b8d7 b7f160b e8de3ce b7f160b 0e80df8 b7f160b 0e80df8 b7f160b 0e80df8 b7f160b ec72229 b7f160b e5e33ac e8de3ce e5e33ac e8de3ce e5e33ac 0e80df8 e5e33ac 0e80df8 e5e33ac 0e80df8 e5e33ac ec72229 e5e33ac 62fb408 a291864 62fb408 590b8c3 62fb408 79b1523 62fb408 f41c216 62fb408 f41c216 62fb408 0e80df8 62fb408 590b8c3 62fb408 f41c216 62fb408 f41c216 62fb408 e8de3ce 79b1523 f41c216 79b1523 f41c216 79b1523 0e80df8 79b1523 590b8c3 79b1523 fcaac18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import unittest
from unittest.mock import MagicMock, Mock
import functools
import pprint
from langchain_core.language_models import BaseLanguageModel
from langchain_openai import ChatOpenAI
from meta_prompt import *
from meta_prompt.consts import NODE_ACCEPTANCE_CRITERIA_DEVELOPER
from langgraph.graph import END
import os
class TestMetaPromptGraph(unittest.TestCase):
def setUp(self):
# logging.basicConfig(level=logging.DEBUG)
pass
def test_prompt_node(self):
"""
Test the _prompt_node method of MetaPromptGraph.
This test case sets up a mock language model that returns a response content
and verifies that the updated state has the output attribute updated with
the mocked response content.
"""
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
llm.invoke = lambda x, y=None: "Mocked response content"
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: llm
}
graph = MetaPromptGraph(llms=llms)
state = AgentState(
user_message="Test message", expected_output="Expected output"
)
updated_state = graph._prompt_node(
NODE_PROMPT_INITIAL_DEVELOPER, "output", state
)
assert (
updated_state['output'] == "Mocked response content"
), "The output attribute should be updated with the mocked response content"
def test_output_history_analyzer(self):
"""
Test the _output_history_analyzer method of MetaPromptGraph.
This test case sets up a mock language model that returns an analysis
response and verifies that the updated state has the best output, best
system message, and best output age updated correctly.
"""
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
llm.invoke = lambda x, y: "{\"closerOutputID\": 2, \"analysis\": \"The output should use the `reverse()` method.\"}"
prompts = {}
meta_prompt_graph = MetaPromptGraph(llms=llm, prompts=prompts)
state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="Use the `[::-1]` slicing technique or the `list.reverse()` method.",
output="To reverse a list in Python, you can use the `[::-1]` slicing.",
system_message="To reverse a list, use slicing or the reverse method.",
best_output="To reverse a list in Python, use the `reverse()` method.",
best_system_message="To reverse a list, use the `reverse()` method.",
acceptance_criteria="The output should correctly describe how to reverse a list in Python.",
)
updated_state = meta_prompt_graph._output_history_analyzer(state)
assert (
updated_state['best_output'] == state['output']
), "Best output should be updated to the current output."
assert (
updated_state['best_system_message'] == state['system_message']
), "Best system message should be updated to the current system message."
assert (
updated_state['best_output_age'] == 0
), "Best output age should be reset to 0."
def test_prompt_analyzer_accept(self):
"""
Test the _prompt_analyzer method of MetaPromptGraph when the prompt analyzer
accepts the output.
This test case sets up a mock language model that returns an acceptance
response and verifies that the updated state has the accepted attribute
set to True.
"""
# llms = {
# NODE_PROMPT_ANALYZER: lambda prompt: "{\"Accept\": \"Yes\"}"
# }
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
llm.invoke = lambda x, y: "{\"Accept\": \"Yes\"}"
meta_prompt_graph = MetaPromptGraph(llms=llm)
state = AgentState(
output="Test output", expected_output="Expected output",
acceptance_criteria="Acceptance criteria: ...",
system_message="System message: ...",
max_output_age=2
)
updated_state = meta_prompt_graph._prompt_analyzer(state)
assert updated_state['accepted'] is True
def test_get_node_names(self):
"""
Test the get_node_names method of MetaPromptGraph.
This test case verifies that the get_node_names method returns the
correct list of node names.
"""
graph = MetaPromptGraph()
node_names = graph.get_node_names()
self.assertEqual(node_names, META_PROMPT_NODES)
def test_workflow_execution(self):
"""
Test the workflow execution of the MetaPromptGraph.
This test case sets up a MetaPromptGraph with a single language model and
executes it with a given input state. It then verifies that the output
state contains the expected keys and values.
"""
model_name = os.getenv("TEST_MODEL_NAME_EXECUTOR")
raw_llm = ChatOpenAI(model_name=model_name)
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: raw_llm,
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: raw_llm,
NODE_PROMPT_DEVELOPER: raw_llm,
NODE_PROMPT_EXECUTOR: raw_llm,
NODE_OUTPUT_HISTORY_ANALYZER: raw_llm,
NODE_PROMPT_ANALYZER: raw_llm,
NODE_PROMPT_SUGGESTER: raw_llm,
}
meta_prompt_graph = MetaPromptGraph(llms=llms)
input_state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="Use the `[::-1]` slicing technique or the "
"`list.reverse()` method.",
acceptance_criteria="Similar in meaning, text length and style.",
max_output_age=2
)
output_state = meta_prompt_graph(input_state, recursion_limit=25)
pprint.pp(output_state)
assert (
"best_system_message" in output_state
), "The output state should contain the key 'best_system_message'"
assert (
output_state["best_system_message"] is not None
), "The best system message should not be None"
if (
"best_system_message" in output_state
and output_state["best_system_message"] is not None
):
print(output_state["best_system_message"])
user_message = "How can I create a list of numbers in Python?"
messages = [("system", output_state["best_system_message"]), ("human", user_message)]
result = raw_llm.invoke(messages)
assert hasattr(result, "content"), "The result should have the attribute 'content'"
print(result.content)
def test_workflow_execution_with_llms(self):
"""
Test the workflow execution of the MetaPromptGraph with multiple LLMs.
This test case sets up a MetaPromptGraph with multiple language models and
executes it with a given input state. It then verifies that the output
state contains the expected keys and values.
"""
optimizer_llm = ChatOpenAI(
model_name=os.getenv("TEST_MODEL_NAME_OPTIMIZER"), temperature=0.5
)
executor_llm = ChatOpenAI(
model_name=os.getenv("TEST_MODEL_NAME_EXECUTOR"), temperature=0.01
)
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: optimizer_llm,
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: optimizer_llm,
NODE_PROMPT_DEVELOPER: optimizer_llm,
NODE_PROMPT_EXECUTOR: executor_llm,
NODE_OUTPUT_HISTORY_ANALYZER: optimizer_llm,
NODE_PROMPT_ANALYZER: optimizer_llm.bind(response_format={"type": "json_object"}),
NODE_PROMPT_SUGGESTER: optimizer_llm,
}
meta_prompt_graph = MetaPromptGraph(llms=llms)
input_state = AgentState(
max_output_age=2,
user_message="How do I reverse a list in Python?",
expected_output="Use the `[::-1]` slicing technique or the "
"`list.reverse()` method.",
# acceptance_criteria="Similar in meaning, text length and style."
)
output_state = meta_prompt_graph(input_state, recursion_limit=25)
pprint.pp(output_state)
assert (
"best_system_message" in output_state
), "The output state should contain the key 'best_system_message'"
assert (
output_state["best_system_message"] is not None
), "The best system message should not be None"
if (
"best_system_message" in output_state
and output_state["best_system_message"] is not None
):
print(output_state["best_system_message"])
user_message = "How can I create a list of numbers in Python?"
messages = [("system", output_state["best_system_message"]), ("human", user_message)]
result = executor_llm.invoke(messages)
assert hasattr(result, "content"), "The result should have the attribute 'content'"
print(result.content)
def test_simple_workflow_execution(self):
"""
Test the simple workflow execution of the MetaPromptGraph.
This test case sets up a MetaPromptGraph with a mock LLM and executes it
with a given input state. It then verifies that the output state contains
the expected keys and values.
"""
# Create a mock LLM that returns predefined responses based on the input messages
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
responses = [
"Explain how to reverse a list in Python.", # NODE_PROMPT_INITIAL_DEVELOPER
"Here's one way: `my_list[::-1]`", # NODE_PROMPT_EXECUTOR
"{\"Accept\": \"Yes\"}", # NODE_PPROMPT_ANALYZER
]
# everytime llm.invoke was called, it returns a item in responses
llm.invoke = lambda x, y=None: responses.pop(0)
meta_prompt_graph = MetaPromptGraph(llms=llm)
input_state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="The output should use the `reverse()` method.",
acceptance_criteria="The output should be correct and efficient.",
max_output_age=2
)
output_state = meta_prompt_graph(input_state)
self.assertIsNotNone(output_state['best_system_message'])
self.assertIsNotNone(output_state['best_output'])
pprint.pp(output_state["best_output"])
def test_iterated_workflow_execution(self):
"""
Test the iterated workflow execution of the MetaPromptGraph.
This test case sets up a MetaPromptGraph with a mock LLM and executes it
with a given input state. It then verifies that the output state contains
the expected keys and values. The test case simulates an iterated workflow
where the LLM provides multiple responses based on the input messages.
"""
# Create a mock LLM that returns predefined responses based on the input messages
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
responses = [
"Explain how to reverse a list in Python.", # NODE_PROMPT_INITIAL_DEVELOPER
"Here's one way: `my_list[::-1]`", # NODE_PROMPT_EXECUTOR
"{\"Accept\": \"No\"}", # NODE_PPROMPT_ANALYZER
"Try using the `reverse()` method instead.", # NODE_PROMPT_SUGGESTER
"Explain how to reverse a list in Python. Output in a Markdown List.", # NODE_PROMPT_DEVELOPER
"Here's one way: `my_list.reverse()`", # NODE_PROMPT_EXECUTOR
"{\"closerOutputID\": 2, \"analysis\": \"The output should use the `reverse()` method.\"}", # NODE_OUTPUT_HISTORY_ANALYZER
"{\"Accept\": \"Yes\"}", # NODE_PPROMPT_ANALYZER
]
llm.invoke = lambda x, y = None: responses.pop(0)
meta_prompt_graph = MetaPromptGraph(llms=llm)
input_state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="The output should use the `reverse()` method.",
acceptance_criteria="The output should be correct and efficient.",
max_output_age=2
)
output_state = meta_prompt_graph(input_state)
self.assertIsNotNone(output_state['best_system_message'])
self.assertIsNotNone(output_state['best_output'])
pprint.pp(output_state["best_output"])
def test_create_acceptance_criteria_workflow(self):
"""
Test the _create_acceptance_criteria_workflow method of MetaPromptGraph.
This test case verifies that the workflow created by the _create_acceptance_criteria_workflow method
contains the correct node and edge.
"""
llms = {
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: ChatOpenAI(model_name=os.getenv("TEST_MODEL_NAME_ACCEPTANCE_CRITERIA_DEVELOPER"))
}
meta_prompt_graph = MetaPromptGraph(llms=llms)
workflow = meta_prompt_graph._create_workflow_for_node(NODE_ACCEPTANCE_CRITERIA_DEVELOPER)
# Check if the workflow contains the correct node
self.assertIn(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, workflow.nodes)
# Check if the workflow contains the correct edge
self.assertIn((NODE_ACCEPTANCE_CRITERIA_DEVELOPER, END), workflow.edges)
# compile the workflow
graph = workflow.compile()
print(graph)
# invoke the workflow
state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="The output should use the `reverse()` method.",
# system_message="Create acceptance criteria for the task of reversing a list in Python."
)
output_state = graph.invoke(state)
# check if the output state contains the acceptance criteria
self.assertIsNotNone(output_state['acceptance_criteria'])
# check if the acceptance criteria includes string '`reverse()`'
self.assertIn('`reverse()`', output_state['acceptance_criteria'])
pprint.pp(output_state["acceptance_criteria"])
def test_run_acceptance_criteria_graph(self):
"""Test the run_acceptance_criteria_graph method of MetaPromptGraph.
This test case verifies that the run_acceptance_criteria_graph method
returns a state with acceptance criteria.
"""
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
llm.invoke = lambda x, y: "{\"Acceptance criteria\": \"Acceptance criteria: ...\"}"
meta_prompt_graph = MetaPromptGraph(llms=llm)
state = AgentState(
user_message="How do I reverse a list in Python?",
expected_output="The output should use the `reverse()` method.",
)
output_state = meta_prompt_graph.run_node_graph(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, state)
# Check if the output state contains the acceptance criteria
self.assertIsNotNone(output_state["acceptance_criteria"])
# Check if the acceptance criteria includes the expected content
self.assertIn("Acceptance criteria: ...", output_state["acceptance_criteria"])
def test_run_prompt_initial_developer_graph(self):
"""Test the run_prompt_initial_developer_graph method of MetaPromptGraph.
This test case verifies that the run_prompt_initial_developer_graph method
returns a state with an initial developer prompt.
"""
llm = Mock(spec=BaseLanguageModel)
llm.config_specs = []
llm.invoke = lambda x, y: "{\"Initial developer prompt\": \"Initial developer prompt: ...\"}"
meta_prompt_graph = MetaPromptGraph(llms=llm)
state = AgentState(user_message="How do I reverse a list in Python?")
output_state = meta_prompt_graph.run_node_graph(NODE_PROMPT_INITIAL_DEVELOPER, state)
# Check if the output state contains the initial developer prompt
self.assertIsNotNone(output_state['system_message'])
# Check if the initial developer prompt includes the expected content
self.assertIn("Initial developer prompt: ...", output_state['system_message'])
if __name__ == '__main__':
unittest.main() |