meta-prompt / app /gradio_meta_prompt_utils.py
yaleh's picture
Updated unit test.
590b8c3
from typing import Any, Dict, List, Optional
import json
import logging
from pathlib import Path
import csv
import io
import tempfile
import pandas as pd
import gradio as gr
from gradio import CSVLogger, utils
from gradio_client import utils as client_utils
from confz import BaseConfig
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI # Don't remove this import
from pythonjsonlogger import jsonlogger
from app.config import MetaPromptConfig, RoleMessage
from meta_prompt import *
from meta_prompt.sample_generator import TaskDescriptionGenerator
def prompt_templates_confz2langchain(
prompt_templates: Dict[str, Dict[str, List[RoleMessage]]]
) -> Dict[str, ChatPromptTemplate]:
"""
Convert a dictionary of prompt templates from the configuration format to
the language chain format.
This function takes a dictionary of prompt templates in the configuration
format and converts them to the language chain format. Each prompt template
is converted to a ChatPromptTemplate object, which is then stored in a new
dictionary with the same keys.
Args:
prompt_templates (Dict[str, Dict[str, List[RoleMessage]]]):
A dictionary of prompt templates in the configuration format.
Returns:
Dict[str, ChatPromptTemplate]:
A dictionary of prompt templates in the language chain format.
"""
return {
node: ChatPromptTemplate.from_messages(
[
(role_message.role, role_message.message)
for role_message in role_messages
]
)
for node, role_messages in prompt_templates.items()
}
class SimplifiedCSVLogger(CSVLogger):
"""
A subclass of CSVLogger that logs only the components data to a CSV file,
excluding flag, username, and timestamp information.
"""
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: str | None = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.csv"
is_new = not Path(log_filepath).exists()
headers = [
getattr(component, "label", None) or f"component {idx}"
for idx, component in enumerate(self.components)
]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(flagging_dir) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if utils.is_prop_update(sample):
csv_data.append(str(sample))
else:
data = component.flag(sample, flag_dir=save_dir) if sample is not None else ""
if self.simplify_file_data:
data = utils.simplify_file_data_in_str(data)
csv_data.append(data)
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
writer.writerow(utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, encoding="utf-8") as csvfile:
line_count = len(list(csv.reader(csvfile))) - 1
return line_count
class LLMModelFactory:
"""A factory class for creating instances of LLM models.
This class follows the Singleton pattern, ensuring that only one instance is created.
The `create` method dynamically instantiates a model based on the provided `model_type`.
Attributes:
_instance (LLMModelFactory): A private class variable to store the singleton instance.
Methods:
create(model_type: str, **kwargs) -> BaseLanguageModel:
Dynamically creates and returns an instance of a model based on `model_type`.
"""
_instance = None
def __new__(cls):
if not cls._instance:
cls._instance = super(LLMModelFactory, cls).__new__(cls)
return cls._instance
def create(self, model_type: str, **kwargs) -> BaseLanguageModel:
"""Creates and returns an instance of a model based on `model_type`.
Args:
model_type (str): The name of the model class to instantiate.
**kwargs: Additional keyword arguments to pass to the model constructor.
Returns:
BaseLanguageModel: An instance of a model that inherits from BaseLanguageModel.
"""
model_class = globals()[model_type]
return model_class(**kwargs)
def chat_log_2_chatbot_list(chat_log: str) -> List[List[str]]:
"""
Convert a chat log string into a list of dialogues for the Chatbot format.
Args:
chat_log (str): A JSON formatted chat log where each line represents an
action with its message. Expected actions are 'invoke'
and 'response'.
Returns:
List[List[str]]: A list of dialogue pairs where the first element is a
user input and the second element is a bot response.
If the action was 'invoke', the first element will be
the message, and the second element will be None. If
the action was 'response', the first element will be
None, and the second element will be the message.
"""
chatbot_list = []
if chat_log is None or chat_log == '':
return chatbot_list
for line in chat_log.splitlines():
try:
json_line = json.loads(line)
if 'action' in json_line:
if json_line['action'] == 'invoke':
chatbot_list.append([json_line['message'], None])
if json_line['action'] == 'response':
chatbot_list.append([None, json_line['message']])
except json.decoder.JSONDecodeError as e:
print(f"Error decoding JSON log output: {e}")
print(line)
except KeyError as e:
print(f"Error accessing key in JSON log output: {e}")
print(line)
return chatbot_list
def on_prompt_model_tab_state_change(config, model_tab_select_state,
simple_model_name, advanced_optimizer_model_name, advanced_executor_model_name,
expert_prompt_initial_developer_model_name,
expert_prompt_initial_developer_temperature,
expert_prompt_acceptance_criteria_developer_model_name,
expert_prompt_acceptance_criteria_temperature,
expert_prompt_developer_model_name,
expert_prompt_developer_temperature,
expert_prompt_executor_model_name,
expert_prompt_executor_temperature,
expert_prompt_history_analyzer_model_name,
expert_prompt_history_analyzer_temperature,
expert_prompt_analyzer_model_name,
expert_prompt_analyzer_temperature,
expert_prompt_suggester_model_name,
expert_prompt_suggester_temperature):
if model_tab_select_state == 'Simple':
return simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature, \
simple_model_name, \
config.default_llm_temperature
elif model_tab_select_state == 'Advanced':
return advanced_optimizer_model_name, \
config.default_llm_temperature, \
advanced_optimizer_model_name, \
config.default_llm_temperature, \
advanced_optimizer_model_name, \
config.default_llm_temperature, \
advanced_executor_model_name, \
config.default_llm_temperature, \
advanced_optimizer_model_name, \
config.default_llm_temperature, \
advanced_optimizer_model_name, \
config.default_llm_temperature, \
advanced_executor_model_name, \
config.default_llm_temperature
elif model_tab_select_state == 'Expert':
return expert_prompt_initial_developer_model_name, \
expert_prompt_initial_developer_temperature, \
expert_prompt_acceptance_criteria_developer_model_name, \
expert_prompt_acceptance_criteria_temperature, \
expert_prompt_developer_model_name, \
expert_prompt_developer_temperature, \
expert_prompt_executor_model_name, \
expert_prompt_executor_temperature, \
expert_prompt_history_analyzer_model_name, \
expert_prompt_history_analyzer_temperature, \
expert_prompt_analyzer_model_name, \
expert_prompt_analyzer_temperature, \
expert_prompt_suggester_model_name, \
expert_prompt_suggester_temperature
else:
raise ValueError(f"Invalid model tab selected: {model_tab_select_state}")
def on_model_tab_select(event: gr.SelectData):
return event.value
def evaluate_system_message(config, system_message, user_message, executor_model_name, executor_temperature):
"""
Evaluate a system message by using it to generate a response from an
executor model based on the current active tab and provided user message.
This function retrieves the appropriate language model (LLM) for the
current active model tab, formats a chat prompt template with the system
message and user message, invokes the LLM using this formatted prompt, and
returns the content of the output if it exists.
Args:
system_message (str): The system message to use when evaluating the
response.
user_message (str): The user's input message for which a response will
be generated.
executor_model_state (gr.State): The state object containing the name
of the executor model to use.
Returns:
str: The content of the output generated by the LLM based on the system
message and user message, if it exists; otherwise, an empty string.
Raises:
gr.Error: If there is a Gradio-specific error during the execution of
this function.
Exception: For any other unexpected errors that occur during the
execution of this function.
"""
llm = initialize_llm(config, executor_model_name, {'temperature': executor_temperature})
template = ChatPromptTemplate.from_messages([
("system", "{system_message}"),
("human", "{user_message}")
])
try:
output = llm.invoke(template.format(
system_message=system_message, user_message=user_message))
return output.content if hasattr(output, 'content') else ""
except gr.Error as e:
raise e
except Exception as e:
raise gr.Error(f"Error: {e}")
def generate_acceptance_criteria(config, system_message, user_message, expected_output, acceptance_criteria_model_name, acceptance_criteria_temperature, prompt_template_group):
"""
Generate acceptance criteria based on the system message, user message, and expected output.
This function uses the MetaPromptGraph's run_acceptance_criteria_graph method
to generate acceptance criteria.
Args:
system_message (str): The system message to use when generating acceptance criteria.
user_message (str): The user's input message.
expected_output (str): The anticipated response or outcome from the language
model based on the user's message.
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use.
acceptance_criteria_temperature (float): The temperature to use for the acceptance criteria model.
prompt_template_group (Optional[str], optional): The group of prompt templates
to use. Defaults to None.
Returns:
tuple: A tuple containing the generated acceptance criteria and the chat log.
"""
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
)
logger.addHandler(log_handler)
llm = initialize_llm(config, acceptance_criteria_model_name, {'temperature': acceptance_criteria_temperature})
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(
config.prompt_templates[prompt_template_group]
)
acceptance_criteria_graph = MetaPromptGraph(llms={
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: llm
}, prompts=prompt_templates,
verbose=config.verbose, logger=logger)
state = AgentState(
system_message=system_message,
user_message=user_message,
expected_output=expected_output
)
output_state = acceptance_criteria_graph.run_node_graph(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, state)
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
return output_state.get('acceptance_criteria', ""), chat_log_2_chatbot_list(log_output)
def generate_initial_system_message(
config,
user_message: str,
expected_output: str,
initial_developer_model_name: str,
initial_developer_temperature: float,
prompt_template_group: Optional[str] = None
) -> tuple:
"""
Generate an initial system message based on the user message and expected output.
Args:
user_message (str): The user's input message.
expected_output (str): The anticipated response or outcome from the language model.
initial_developer_model_name (str): The name of the initial developer model to use.
prompt_template_group (Optional[str], optional):
The group of prompt templates to use. Defaults to None.
Returns:
tuple: A tuple containing the initial system message and the chat log.
"""
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s')
)
logger.addHandler(log_handler)
llm = initialize_llm(config, initial_developer_model_name, {'temperature': initial_developer_temperature})
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(
config.prompt_templates[prompt_template_group]
)
initial_system_message_graph = MetaPromptGraph(
llms={NODE_PROMPT_INITIAL_DEVELOPER: llm},
prompts=prompt_templates,
verbose=config.verbose,
logger=logger
)
state = AgentState(
user_message=user_message,
expected_output=expected_output
)
output_state = initial_system_message_graph.run_node_graph(NODE_PROMPT_INITIAL_DEVELOPER, state)
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
system_message = output_state.get('system_message', "")
return system_message, chat_log_2_chatbot_list(log_output)
def process_message_with_models(
config,
user_message: str, expected_output: str, acceptance_criteria: str,
initial_system_message: str, recursion_limit: int, max_output_age: int,
initial_developer_model_name: str, initial_developer_temperature: float,
acceptance_criteria_model_name: str, acceptance_criteria_temperature: float,
developer_model_name: str, developer_temperature: float,
executor_model_name: str, executor_temperature: float,
history_analyzer_model_name: str, history_analyzer_temperature: float,
analyzer_model_name: str, analyzer_temperature: float,
suggester_model_name: str, suggester_temperature: float,
prompt_template_group: Optional[str] = None,
aggressive_exploration: bool = False
) -> tuple:
"""
Process a user message by executing the MetaPromptGraph with provided language models and input state.
This function sets up the initial state of the conversation, logs the execution if verbose mode is enabled,
and extracts the best system message, output, and analysis from the output state of the MetaPromptGraph.
Args:
user_message (str): The user's input message to be processed by the language model(s).
expected_output (str): The anticipated response or outcome from the language model(s) based on the user's message.
acceptance_criteria (str): Criteria that determines whether the output is acceptable or not.
initial_system_message (str): Initial instruction given to the language model(s) before processing the user's message.
recursion_limit (int): The maximum number of times the MetaPromptGraph can call itself recursively.
max_output_age (int): The maximum age of output messages that should be considered in the conversation history.
initial_developer_model_name (str): The name of the initial developer model to use.
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use.
developer_model_name (str): The name of the developer model to use.
executor_model_name (str): The name of the executor model to use.
history_analyzer_model_name (str): The name of the history analyzer model to use.
analyzer_model_name (str): The name of the analyzer model to use.
suggester_model_name (str): The name of the suggester model to use.
prompt_template_group (Optional[str], optional): The group of prompt templates to use. Defaults to None.
aggressive_exploration (bool, optional): Whether to use aggressive exploration. Defaults to False.
Returns:
tuple: A tuple containing the best system message, output, analysis, acceptance criteria, and chat log in JSON format.
"""
input_state = AgentState(
user_message=user_message,
expected_output=expected_output,
acceptance_criteria=acceptance_criteria,
system_message=initial_system_message,
max_output_age=max_output_age
)
log_stream = io.StringIO()
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None
log_handler = logging.StreamHandler(log_stream) if logger else None
if log_handler:
log_handler.setFormatter(jsonlogger.JsonFormatter(
'%(asctime)s %(name)s %(levelname)s %(message)s'))
logger.addHandler(log_handler)
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group])
llms = {
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(config, initial_developer_model_name, {'temperature': initial_developer_temperature}),
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(config, acceptance_criteria_model_name, {'temperature': acceptance_criteria_temperature}),
NODE_PROMPT_DEVELOPER: initialize_llm(config, developer_model_name, {'temperature': developer_temperature}),
NODE_PROMPT_EXECUTOR: initialize_llm(config, executor_model_name, {'temperature': executor_temperature}),
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(config, history_analyzer_model_name, {'temperature': history_analyzer_temperature}),
NODE_PROMPT_ANALYZER: initialize_llm(config, analyzer_model_name, {'temperature': analyzer_temperature}),
NODE_PROMPT_SUGGESTER: initialize_llm(config, suggester_model_name, {'temperature': suggester_temperature})
}
# Bind response_format to llm here
nodes_to_bind = [NODE_OUTPUT_HISTORY_ANALYZER, NODE_PROMPT_ANALYZER, NODE_PROMPT_SUGGESTER]
for node in nodes_to_bind:
llms[node] = llms[node].bind(response_format={"type": "json_object"})
meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates,
aggressive_exploration=aggressive_exploration,
verbose=config.verbose, logger=logger)
try:
output_state = meta_prompt_graph(input_state, recursion_limit=recursion_limit)
except Exception as e:
if isinstance(e, gr.Error):
raise e
else:
raise gr.Error(f"Error: {e}")
if log_handler:
log_handler.close()
log_output = log_stream.getvalue()
else:
log_output = None
system_message = output_state.get(
'best_system_message', "Error: The output state does not contain a valid 'best_system_message'")
output = output_state.get(
'best_output', "Error: The output state does not contain a valid 'best_output'")
analysis = output_state.get(
'analysis', "Error: The output state does not contain a valid 'analysis'")
acceptance_criteria = output_state.get(
'acceptance_criteria', "Error: The output state does not contain a valid 'acceptance_criteria'")
return (system_message, output, analysis, acceptance_criteria, chat_log_2_chatbot_list(log_output))
def initialize_llm(config: MetaPromptConfig, model_name: str, model_config: Optional[Dict[str, Any]] = None) -> Any:
"""
Initialize and return a language model (LLM) based on its name.
This function retrieves the configuration for the specified language model
from the application's configuration, creates an instance of the appropriate
type of language model using that configuration, and returns it.
Args:
model_name (str): The name of the language model to initialize. This
should correspond to a key in the 'llms' section of the application's
configuration.
model_config (Optional[Dict[str, Any]], optional): Optional model
configurations. Defaults to None.
Returns:
Any: An instance of the specified type of language model, initialized
with its configured settings.
Raises:
KeyError: If no configuration exists for the specified model name.
NotImplementedError: If an unrecognized type is configured for the
language model. This should not occur under normal circumstances
because the LLMModelFactory class checks and validates the type when
creating a new language model.
"""
try:
llm_config = config.llms[model_name]
model_type = llm_config.type
dumped_config = llm_config.model_dump(exclude={'type'})
if model_config:
dumped_config.update(model_config)
return LLMModelFactory().create(model_type, **dumped_config)
except KeyError:
raise KeyError(f"No configuration exists for the model name: {model_name}")
except NotImplementedError:
raise NotImplementedError(
f"Unrecognized type configured for the language model: {model_type}"
)
class FileConfig(BaseConfig):
config_file: str = 'config.yml' # default path
def convert_examples_to_json(examples):
pd_examples = pd.DataFrame(examples)
pd_examples.columns = pd_examples.columns.str.lower()
return pd_examples.to_json(orient="records")
def process_json_data(
config,
examples, model_name, generating_batch_size, temperature
):
try:
# Convert the gradio dataframe into a JSON array
input_json = convert_examples_to_json(examples)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.process(input_json, generating_batch_size)
description = result["description"]
examples_directly = [
[str(example["input"]), str(example["output"])]
for example in result["examples_directly"]["examples"]
]
input_analysis = result["examples_from_briefs"]["input_analysis"]
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
examples_from_briefs = [
[str(example["input"]), str(example["output"])]
for example in result["examples_from_briefs"]["examples"]
]
examples = [
[str(example["input"]), str(example["output"])]
for example in result["additional_examples"]
]
suggestions = result.get("suggestions", [])
return (
description,
gr.update(choices=suggestions, value=[]),
examples_directly,
input_analysis,
new_example_briefs,
examples_from_briefs,
examples,
)
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def generate_description(config, examples, model_name, temperature):
try:
input_json = convert_examples_to_json(examples)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.generate_description(input_json)
description = result["description"]
suggestions = result["suggestions"]
return description, gr.update(choices=suggestions, value=[])
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def analyze_input_data(config, description, model_name, temperature):
try:
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
input_analysis = generator.analyze_input(description)
return input_analysis
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def generate_example_briefs(
config, description, input_analysis, generating_batch_size, model_name, temperature
):
try:
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
briefs = generator.generate_briefs(
description, input_analysis, generating_batch_size
)
return briefs
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def generate_examples_using_briefs(
config, description, new_example_briefs, examples, generating_batch_size, model_name, temperature
):
try:
input_json = convert_examples_to_json(examples)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_from_briefs(
description, new_example_briefs, input_json, generating_batch_size
)
examples = [
[str(example["input"]), str(example["output"])]
for example in result["examples"]
]
return examples
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def generate_examples_from_description(
config, description, raw_example, generating_batch_size, model_name, temperature
):
try:
input_json = convert_examples_to_json(raw_example)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.generate_examples_directly(
description, input_json, generating_batch_size
)
examples = [
[str(example["input"]), str(example["output"])] for example in result["examples"]
]
return examples
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def format_selected_input_example_dataframe(evt: gr.SelectData, examples):
if evt.index[0] < len(examples):
selected_example = examples.iloc[evt.index[0]]
return "update", evt.index[0]+1, selected_example.iloc[0], selected_example.iloc[1]
return None, None, None, None
def format_selected_example(evt: gr.SelectData, examples):
if evt.index[0] < len(examples):
selected_example = examples.iloc[evt.index[0]]
return (
"append",
None,
selected_example.iloc[0],
selected_example.iloc[1],
)
return None, None, None, None
def import_json_data(file, input_dataframe):
if file is not None:
df = pd.read_json(file.name)
# Uppercase the first letter of each column name
df.columns = df.columns.str.title()
return df
return input_dataframe
def export_json_data(dataframe):
if dataframe is not None and not dataframe.empty:
# Copy the dataframe and lowercase the column names
df_copy = dataframe.copy()
df_copy.columns = df_copy.columns.str.lower()
json_str = df_copy.to_json(orient="records", indent=2)
# create a temporary file with the json string
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as temp_file:
temp_file.write(json_str.encode("utf-8"))
temp_file_path = temp_file.name
return temp_file_path
return None
def append_example_to_input_dataframe(
new_example_input, new_example_output, input_dataframe
):
try:
if input_dataframe.empty or (input_dataframe.iloc[-1] == ['', '']).all():
input_dataframe = pd.DataFrame([[new_example_input, new_example_output]], columns=["Input", "Output"])
else:
input_dataframe = pd.concat([input_dataframe, pd.DataFrame([[new_example_input, new_example_output]], columns=["Input", "Output"])], ignore_index=True)
return input_dataframe, None, None, None, None
except KeyError:
raise gr.Error("Invalid input or output")
def delete_selected_dataframe_row(row_index, input_dataframe):
if row_index is not None and row_index > 0:
input_dataframe = input_dataframe.drop(index=row_index - 1).reset_index(
drop=True
)
return input_dataframe, None, None, None, None
return input_dataframe, None, None, None, None
def update_selected_dataframe_row(
selected_example_input, selected_example_output, selected_row_index, input_dataframe
):
if selected_row_index is not None and selected_row_index > 0:
input_dataframe.iloc[selected_row_index - 1] = [
selected_example_input,
selected_example_output,
]
return input_dataframe, None, None, None, None
return input_dataframe, None, None, None, None
def input_dataframe_change(
input_dataframe, selected_group_mode, selected_group_index, selected_group_input, selected_group_output
):
if len(input_dataframe) <= 1:
return None, None, None, None
return (
selected_group_mode,
selected_group_index,
selected_group_input,
selected_group_output,
)
def generate_suggestions(config, description, examples, model_name, temperature):
try:
input_json = convert_examples_to_json(examples)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.generate_suggestions(input_json, description)
return gr.update(choices=result["suggestions"])
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def apply_suggestions(config, description, suggestions, examples, model_name, temperature):
try:
input_json = convert_examples_to_json(examples)
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3})
generator = TaskDescriptionGenerator(model)
result = generator.update_description(input_json, description, suggestions)
return result["description"], gr.update(choices=result["suggestions"], value=[])
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
def evaluate_output(
config,
expected_output: str,
output: str,
acceptance_criteria: str,
prompt_analyzer_model_name: str,
prompt_analyzer_temperature: float,
prompt_template_group: Optional[str] = None
) -> str:
# Package the required variables into an AgentState dictionary
state = AgentState(
acceptance_criteria=acceptance_criteria,
expected_output=expected_output,
output=output
)
# Initialize the acceptance criteria model
llm = initialize_llm(config, prompt_analyzer_model_name, {'temperature': prompt_analyzer_temperature}).bind(response_format={"type": "json_object"})
# Get the prompt templates
if prompt_template_group is None:
prompt_template_group = 'default'
prompt_templates = prompt_templates_confz2langchain(
config.prompt_templates[prompt_template_group]
)
# Create the MetaPromptGraph instance
acceptance_criteria_graph = MetaPromptGraph(
llms={NODE_PROMPT_ANALYZER: llm},
prompts=prompt_templates,
verbose=config.verbose
)
# Run the node graph for evaluation
output_state = acceptance_criteria_graph.run_node_graph(NODE_PROMPT_ANALYZER, state)
# Return the evaluation result
return output_state.get('analysis', "Error: The output state does not contain a valid 'analysis'")