Spaces:
Running
Running
from typing import Any, Dict, List, Optional | |
import json | |
import logging | |
from pathlib import Path | |
import csv | |
import io | |
import tempfile | |
import pandas as pd | |
import gradio as gr | |
from gradio import CSVLogger, utils | |
from gradio_client import utils as client_utils | |
from confz import BaseConfig | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI # Don't remove this import | |
from pythonjsonlogger import jsonlogger | |
from app.config import MetaPromptConfig, RoleMessage | |
from meta_prompt import * | |
from meta_prompt.sample_generator import TaskDescriptionGenerator | |
def prompt_templates_confz2langchain( | |
prompt_templates: Dict[str, Dict[str, List[RoleMessage]]] | |
) -> Dict[str, ChatPromptTemplate]: | |
""" | |
Convert a dictionary of prompt templates from the configuration format to | |
the language chain format. | |
This function takes a dictionary of prompt templates in the configuration | |
format and converts them to the language chain format. Each prompt template | |
is converted to a ChatPromptTemplate object, which is then stored in a new | |
dictionary with the same keys. | |
Args: | |
prompt_templates (Dict[str, Dict[str, List[RoleMessage]]]): | |
A dictionary of prompt templates in the configuration format. | |
Returns: | |
Dict[str, ChatPromptTemplate]: | |
A dictionary of prompt templates in the language chain format. | |
""" | |
return { | |
node: ChatPromptTemplate.from_messages( | |
[ | |
(role_message.role, role_message.message) | |
for role_message in role_messages | |
] | |
) | |
for node, role_messages in prompt_templates.items() | |
} | |
class SimplifiedCSVLogger(CSVLogger): | |
""" | |
A subclass of CSVLogger that logs only the components data to a CSV file, | |
excluding flag, username, and timestamp information. | |
""" | |
def flag( | |
self, | |
flag_data: list[Any], | |
flag_option: str = "", | |
username: str | None = None, | |
) -> int: | |
flagging_dir = self.flagging_dir | |
log_filepath = Path(flagging_dir) / "log.csv" | |
is_new = not Path(log_filepath).exists() | |
headers = [ | |
getattr(component, "label", None) or f"component {idx}" | |
for idx, component in enumerate(self.components) | |
] | |
csv_data = [] | |
for idx, (component, sample) in enumerate(zip(self.components, flag_data)): | |
save_dir = Path(flagging_dir) / client_utils.strip_invalid_filename_characters( | |
getattr(component, "label", None) or f"component {idx}" | |
) | |
if utils.is_prop_update(sample): | |
csv_data.append(str(sample)) | |
else: | |
data = component.flag(sample, flag_dir=save_dir) if sample is not None else "" | |
if self.simplify_file_data: | |
data = utils.simplify_file_data_in_str(data) | |
csv_data.append(data) | |
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile: | |
writer = csv.writer(csvfile) | |
if is_new: | |
writer.writerow(utils.sanitize_list_for_csv(headers)) | |
writer.writerow(utils.sanitize_list_for_csv(csv_data)) | |
with open(log_filepath, encoding="utf-8") as csvfile: | |
line_count = len(list(csv.reader(csvfile))) - 1 | |
return line_count | |
class LLMModelFactory: | |
"""A factory class for creating instances of LLM models. | |
This class follows the Singleton pattern, ensuring that only one instance is created. | |
The `create` method dynamically instantiates a model based on the provided `model_type`. | |
Attributes: | |
_instance (LLMModelFactory): A private class variable to store the singleton instance. | |
Methods: | |
create(model_type: str, **kwargs) -> BaseLanguageModel: | |
Dynamically creates and returns an instance of a model based on `model_type`. | |
""" | |
_instance = None | |
def __new__(cls): | |
if not cls._instance: | |
cls._instance = super(LLMModelFactory, cls).__new__(cls) | |
return cls._instance | |
def create(self, model_type: str, **kwargs) -> BaseLanguageModel: | |
"""Creates and returns an instance of a model based on `model_type`. | |
Args: | |
model_type (str): The name of the model class to instantiate. | |
**kwargs: Additional keyword arguments to pass to the model constructor. | |
Returns: | |
BaseLanguageModel: An instance of a model that inherits from BaseLanguageModel. | |
""" | |
model_class = globals()[model_type] | |
return model_class(**kwargs) | |
def chat_log_2_chatbot_list(chat_log: str) -> List[List[str]]: | |
""" | |
Convert a chat log string into a list of dialogues for the Chatbot format. | |
Args: | |
chat_log (str): A JSON formatted chat log where each line represents an | |
action with its message. Expected actions are 'invoke' | |
and 'response'. | |
Returns: | |
List[List[str]]: A list of dialogue pairs where the first element is a | |
user input and the second element is a bot response. | |
If the action was 'invoke', the first element will be | |
the message, and the second element will be None. If | |
the action was 'response', the first element will be | |
None, and the second element will be the message. | |
""" | |
chatbot_list = [] | |
if chat_log is None or chat_log == '': | |
return chatbot_list | |
for line in chat_log.splitlines(): | |
try: | |
json_line = json.loads(line) | |
if 'action' in json_line: | |
if json_line['action'] == 'invoke': | |
chatbot_list.append([json_line['message'], None]) | |
if json_line['action'] == 'response': | |
chatbot_list.append([None, json_line['message']]) | |
except json.decoder.JSONDecodeError as e: | |
print(f"Error decoding JSON log output: {e}") | |
print(line) | |
except KeyError as e: | |
print(f"Error accessing key in JSON log output: {e}") | |
print(line) | |
return chatbot_list | |
def on_prompt_model_tab_state_change(config, model_tab_select_state, | |
simple_model_name, advanced_optimizer_model_name, advanced_executor_model_name, | |
expert_prompt_initial_developer_model_name, | |
expert_prompt_initial_developer_temperature, | |
expert_prompt_acceptance_criteria_developer_model_name, | |
expert_prompt_acceptance_criteria_temperature, | |
expert_prompt_developer_model_name, | |
expert_prompt_developer_temperature, | |
expert_prompt_executor_model_name, | |
expert_prompt_executor_temperature, | |
expert_prompt_history_analyzer_model_name, | |
expert_prompt_history_analyzer_temperature, | |
expert_prompt_analyzer_model_name, | |
expert_prompt_analyzer_temperature, | |
expert_prompt_suggester_model_name, | |
expert_prompt_suggester_temperature): | |
if model_tab_select_state == 'Simple': | |
return simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature, \ | |
simple_model_name, \ | |
config.default_llm_temperature | |
elif model_tab_select_state == 'Advanced': | |
return advanced_optimizer_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_optimizer_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_optimizer_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_executor_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_optimizer_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_optimizer_model_name, \ | |
config.default_llm_temperature, \ | |
advanced_executor_model_name, \ | |
config.default_llm_temperature | |
elif model_tab_select_state == 'Expert': | |
return expert_prompt_initial_developer_model_name, \ | |
expert_prompt_initial_developer_temperature, \ | |
expert_prompt_acceptance_criteria_developer_model_name, \ | |
expert_prompt_acceptance_criteria_temperature, \ | |
expert_prompt_developer_model_name, \ | |
expert_prompt_developer_temperature, \ | |
expert_prompt_executor_model_name, \ | |
expert_prompt_executor_temperature, \ | |
expert_prompt_history_analyzer_model_name, \ | |
expert_prompt_history_analyzer_temperature, \ | |
expert_prompt_analyzer_model_name, \ | |
expert_prompt_analyzer_temperature, \ | |
expert_prompt_suggester_model_name, \ | |
expert_prompt_suggester_temperature | |
else: | |
raise ValueError(f"Invalid model tab selected: {model_tab_select_state}") | |
def on_model_tab_select(event: gr.SelectData): | |
return event.value | |
def evaluate_system_message(config, system_message, user_message, executor_model_name, executor_temperature): | |
""" | |
Evaluate a system message by using it to generate a response from an | |
executor model based on the current active tab and provided user message. | |
This function retrieves the appropriate language model (LLM) for the | |
current active model tab, formats a chat prompt template with the system | |
message and user message, invokes the LLM using this formatted prompt, and | |
returns the content of the output if it exists. | |
Args: | |
system_message (str): The system message to use when evaluating the | |
response. | |
user_message (str): The user's input message for which a response will | |
be generated. | |
executor_model_state (gr.State): The state object containing the name | |
of the executor model to use. | |
Returns: | |
str: The content of the output generated by the LLM based on the system | |
message and user message, if it exists; otherwise, an empty string. | |
Raises: | |
gr.Error: If there is a Gradio-specific error during the execution of | |
this function. | |
Exception: For any other unexpected errors that occur during the | |
execution of this function. | |
""" | |
llm = initialize_llm(config, executor_model_name, {'temperature': executor_temperature}) | |
template = ChatPromptTemplate.from_messages([ | |
("system", "{system_message}"), | |
("human", "{user_message}") | |
]) | |
try: | |
output = llm.invoke(template.format( | |
system_message=system_message, user_message=user_message)) | |
return output.content if hasattr(output, 'content') else "" | |
except gr.Error as e: | |
raise e | |
except Exception as e: | |
raise gr.Error(f"Error: {e}") | |
def generate_acceptance_criteria(config, system_message, user_message, expected_output, acceptance_criteria_model_name, acceptance_criteria_temperature, prompt_template_group): | |
""" | |
Generate acceptance criteria based on the system message, user message, and expected output. | |
This function uses the MetaPromptGraph's run_acceptance_criteria_graph method | |
to generate acceptance criteria. | |
Args: | |
system_message (str): The system message to use when generating acceptance criteria. | |
user_message (str): The user's input message. | |
expected_output (str): The anticipated response or outcome from the language | |
model based on the user's message. | |
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use. | |
acceptance_criteria_temperature (float): The temperature to use for the acceptance criteria model. | |
prompt_template_group (Optional[str], optional): The group of prompt templates | |
to use. Defaults to None. | |
Returns: | |
tuple: A tuple containing the generated acceptance criteria and the chat log. | |
""" | |
log_stream = io.StringIO() | |
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None | |
log_handler = logging.StreamHandler(log_stream) if logger else None | |
if log_handler: | |
log_handler.setFormatter( | |
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s') | |
) | |
logger.addHandler(log_handler) | |
llm = initialize_llm(config, acceptance_criteria_model_name, {'temperature': acceptance_criteria_temperature}) | |
if prompt_template_group is None: | |
prompt_template_group = 'default' | |
prompt_templates = prompt_templates_confz2langchain( | |
config.prompt_templates[prompt_template_group] | |
) | |
acceptance_criteria_graph = MetaPromptGraph(llms={ | |
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: llm | |
}, prompts=prompt_templates, | |
verbose=config.verbose, logger=logger) | |
state = AgentState( | |
system_message=system_message, | |
user_message=user_message, | |
expected_output=expected_output | |
) | |
output_state = acceptance_criteria_graph.run_node_graph(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, state) | |
if log_handler: | |
log_handler.close() | |
log_output = log_stream.getvalue() | |
else: | |
log_output = None | |
return output_state.get('acceptance_criteria', ""), chat_log_2_chatbot_list(log_output) | |
def generate_initial_system_message( | |
config, | |
user_message: str, | |
expected_output: str, | |
initial_developer_model_name: str, | |
initial_developer_temperature: float, | |
prompt_template_group: Optional[str] = None | |
) -> tuple: | |
""" | |
Generate an initial system message based on the user message and expected output. | |
Args: | |
user_message (str): The user's input message. | |
expected_output (str): The anticipated response or outcome from the language model. | |
initial_developer_model_name (str): The name of the initial developer model to use. | |
prompt_template_group (Optional[str], optional): | |
The group of prompt templates to use. Defaults to None. | |
Returns: | |
tuple: A tuple containing the initial system message and the chat log. | |
""" | |
log_stream = io.StringIO() | |
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None | |
log_handler = logging.StreamHandler(log_stream) if logger else None | |
if log_handler: | |
log_handler.setFormatter( | |
jsonlogger.JsonFormatter('%(asctime)s %(name)s %(levelname)s %(message)s') | |
) | |
logger.addHandler(log_handler) | |
llm = initialize_llm(config, initial_developer_model_name, {'temperature': initial_developer_temperature}) | |
if prompt_template_group is None: | |
prompt_template_group = 'default' | |
prompt_templates = prompt_templates_confz2langchain( | |
config.prompt_templates[prompt_template_group] | |
) | |
initial_system_message_graph = MetaPromptGraph( | |
llms={NODE_PROMPT_INITIAL_DEVELOPER: llm}, | |
prompts=prompt_templates, | |
verbose=config.verbose, | |
logger=logger | |
) | |
state = AgentState( | |
user_message=user_message, | |
expected_output=expected_output | |
) | |
output_state = initial_system_message_graph.run_node_graph(NODE_PROMPT_INITIAL_DEVELOPER, state) | |
if log_handler: | |
log_handler.close() | |
log_output = log_stream.getvalue() | |
else: | |
log_output = None | |
system_message = output_state.get('system_message', "") | |
return system_message, chat_log_2_chatbot_list(log_output) | |
def process_message_with_models( | |
config, | |
user_message: str, expected_output: str, acceptance_criteria: str, | |
initial_system_message: str, recursion_limit: int, max_output_age: int, | |
initial_developer_model_name: str, initial_developer_temperature: float, | |
acceptance_criteria_model_name: str, acceptance_criteria_temperature: float, | |
developer_model_name: str, developer_temperature: float, | |
executor_model_name: str, executor_temperature: float, | |
history_analyzer_model_name: str, history_analyzer_temperature: float, | |
analyzer_model_name: str, analyzer_temperature: float, | |
suggester_model_name: str, suggester_temperature: float, | |
prompt_template_group: Optional[str] = None, | |
aggressive_exploration: bool = False | |
) -> tuple: | |
""" | |
Process a user message by executing the MetaPromptGraph with provided language models and input state. | |
This function sets up the initial state of the conversation, logs the execution if verbose mode is enabled, | |
and extracts the best system message, output, and analysis from the output state of the MetaPromptGraph. | |
Args: | |
user_message (str): The user's input message to be processed by the language model(s). | |
expected_output (str): The anticipated response or outcome from the language model(s) based on the user's message. | |
acceptance_criteria (str): Criteria that determines whether the output is acceptable or not. | |
initial_system_message (str): Initial instruction given to the language model(s) before processing the user's message. | |
recursion_limit (int): The maximum number of times the MetaPromptGraph can call itself recursively. | |
max_output_age (int): The maximum age of output messages that should be considered in the conversation history. | |
initial_developer_model_name (str): The name of the initial developer model to use. | |
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use. | |
developer_model_name (str): The name of the developer model to use. | |
executor_model_name (str): The name of the executor model to use. | |
history_analyzer_model_name (str): The name of the history analyzer model to use. | |
analyzer_model_name (str): The name of the analyzer model to use. | |
suggester_model_name (str): The name of the suggester model to use. | |
prompt_template_group (Optional[str], optional): The group of prompt templates to use. Defaults to None. | |
aggressive_exploration (bool, optional): Whether to use aggressive exploration. Defaults to False. | |
Returns: | |
tuple: A tuple containing the best system message, output, analysis, acceptance criteria, and chat log in JSON format. | |
""" | |
input_state = AgentState( | |
user_message=user_message, | |
expected_output=expected_output, | |
acceptance_criteria=acceptance_criteria, | |
system_message=initial_system_message, | |
max_output_age=max_output_age | |
) | |
log_stream = io.StringIO() | |
logger = logging.getLogger(MetaPromptGraph.__name__) if config.verbose else None | |
log_handler = logging.StreamHandler(log_stream) if logger else None | |
if log_handler: | |
log_handler.setFormatter(jsonlogger.JsonFormatter( | |
'%(asctime)s %(name)s %(levelname)s %(message)s')) | |
logger.addHandler(log_handler) | |
if prompt_template_group is None: | |
prompt_template_group = 'default' | |
prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group]) | |
llms = { | |
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(config, initial_developer_model_name, {'temperature': initial_developer_temperature}), | |
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(config, acceptance_criteria_model_name, {'temperature': acceptance_criteria_temperature}), | |
NODE_PROMPT_DEVELOPER: initialize_llm(config, developer_model_name, {'temperature': developer_temperature}), | |
NODE_PROMPT_EXECUTOR: initialize_llm(config, executor_model_name, {'temperature': executor_temperature}), | |
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(config, history_analyzer_model_name, {'temperature': history_analyzer_temperature}), | |
NODE_PROMPT_ANALYZER: initialize_llm(config, analyzer_model_name, {'temperature': analyzer_temperature}), | |
NODE_PROMPT_SUGGESTER: initialize_llm(config, suggester_model_name, {'temperature': suggester_temperature}) | |
} | |
# Bind response_format to llm here | |
nodes_to_bind = [NODE_OUTPUT_HISTORY_ANALYZER, NODE_PROMPT_ANALYZER, NODE_PROMPT_SUGGESTER] | |
for node in nodes_to_bind: | |
llms[node] = llms[node].bind(response_format={"type": "json_object"}) | |
meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates, | |
aggressive_exploration=aggressive_exploration, | |
verbose=config.verbose, logger=logger) | |
try: | |
output_state = meta_prompt_graph(input_state, recursion_limit=recursion_limit) | |
except Exception as e: | |
if isinstance(e, gr.Error): | |
raise e | |
else: | |
raise gr.Error(f"Error: {e}") | |
if log_handler: | |
log_handler.close() | |
log_output = log_stream.getvalue() | |
else: | |
log_output = None | |
system_message = output_state.get( | |
'best_system_message', "Error: The output state does not contain a valid 'best_system_message'") | |
output = output_state.get( | |
'best_output', "Error: The output state does not contain a valid 'best_output'") | |
analysis = output_state.get( | |
'analysis', "Error: The output state does not contain a valid 'analysis'") | |
acceptance_criteria = output_state.get( | |
'acceptance_criteria', "Error: The output state does not contain a valid 'acceptance_criteria'") | |
return (system_message, output, analysis, acceptance_criteria, chat_log_2_chatbot_list(log_output)) | |
def initialize_llm(config: MetaPromptConfig, model_name: str, model_config: Optional[Dict[str, Any]] = None) -> Any: | |
""" | |
Initialize and return a language model (LLM) based on its name. | |
This function retrieves the configuration for the specified language model | |
from the application's configuration, creates an instance of the appropriate | |
type of language model using that configuration, and returns it. | |
Args: | |
model_name (str): The name of the language model to initialize. This | |
should correspond to a key in the 'llms' section of the application's | |
configuration. | |
model_config (Optional[Dict[str, Any]], optional): Optional model | |
configurations. Defaults to None. | |
Returns: | |
Any: An instance of the specified type of language model, initialized | |
with its configured settings. | |
Raises: | |
KeyError: If no configuration exists for the specified model name. | |
NotImplementedError: If an unrecognized type is configured for the | |
language model. This should not occur under normal circumstances | |
because the LLMModelFactory class checks and validates the type when | |
creating a new language model. | |
""" | |
try: | |
llm_config = config.llms[model_name] | |
model_type = llm_config.type | |
dumped_config = llm_config.model_dump(exclude={'type'}) | |
if model_config: | |
dumped_config.update(model_config) | |
return LLMModelFactory().create(model_type, **dumped_config) | |
except KeyError: | |
raise KeyError(f"No configuration exists for the model name: {model_name}") | |
except NotImplementedError: | |
raise NotImplementedError( | |
f"Unrecognized type configured for the language model: {model_type}" | |
) | |
class FileConfig(BaseConfig): | |
config_file: str = 'config.yml' # default path | |
def convert_examples_to_json(examples): | |
pd_examples = pd.DataFrame(examples) | |
pd_examples.columns = pd_examples.columns.str.lower() | |
return pd_examples.to_json(orient="records") | |
def process_json_data( | |
config, | |
examples, model_name, generating_batch_size, temperature | |
): | |
try: | |
# Convert the gradio dataframe into a JSON array | |
input_json = convert_examples_to_json(examples) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.process(input_json, generating_batch_size) | |
description = result["description"] | |
examples_directly = [ | |
[str(example["input"]), str(example["output"])] | |
for example in result["examples_directly"]["examples"] | |
] | |
input_analysis = result["examples_from_briefs"]["input_analysis"] | |
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"] | |
examples_from_briefs = [ | |
[str(example["input"]), str(example["output"])] | |
for example in result["examples_from_briefs"]["examples"] | |
] | |
examples = [ | |
[str(example["input"]), str(example["output"])] | |
for example in result["additional_examples"] | |
] | |
suggestions = result.get("suggestions", []) | |
return ( | |
description, | |
gr.update(choices=suggestions, value=[]), | |
examples_directly, | |
input_analysis, | |
new_example_briefs, | |
examples_from_briefs, | |
examples, | |
) | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def generate_description(config, examples, model_name, temperature): | |
try: | |
input_json = convert_examples_to_json(examples) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_description(input_json) | |
description = result["description"] | |
suggestions = result["suggestions"] | |
return description, gr.update(choices=suggestions, value=[]) | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def analyze_input_data(config, description, model_name, temperature): | |
try: | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
input_analysis = generator.analyze_input(description) | |
return input_analysis | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def generate_example_briefs( | |
config, description, input_analysis, generating_batch_size, model_name, temperature | |
): | |
try: | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
briefs = generator.generate_briefs( | |
description, input_analysis, generating_batch_size | |
) | |
return briefs | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def generate_examples_using_briefs( | |
config, description, new_example_briefs, examples, generating_batch_size, model_name, temperature | |
): | |
try: | |
input_json = convert_examples_to_json(examples) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_examples_from_briefs( | |
description, new_example_briefs, input_json, generating_batch_size | |
) | |
examples = [ | |
[str(example["input"]), str(example["output"])] | |
for example in result["examples"] | |
] | |
return examples | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def generate_examples_from_description( | |
config, description, raw_example, generating_batch_size, model_name, temperature | |
): | |
try: | |
input_json = convert_examples_to_json(raw_example) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_examples_directly( | |
description, input_json, generating_batch_size | |
) | |
examples = [ | |
[str(example["input"]), str(example["output"])] for example in result["examples"] | |
] | |
return examples | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def format_selected_input_example_dataframe(evt: gr.SelectData, examples): | |
if evt.index[0] < len(examples): | |
selected_example = examples.iloc[evt.index[0]] | |
return "update", evt.index[0]+1, selected_example.iloc[0], selected_example.iloc[1] | |
return None, None, None, None | |
def format_selected_example(evt: gr.SelectData, examples): | |
if evt.index[0] < len(examples): | |
selected_example = examples.iloc[evt.index[0]] | |
return ( | |
"append", | |
None, | |
selected_example.iloc[0], | |
selected_example.iloc[1], | |
) | |
return None, None, None, None | |
def import_json_data(file, input_dataframe): | |
if file is not None: | |
df = pd.read_json(file.name) | |
# Uppercase the first letter of each column name | |
df.columns = df.columns.str.title() | |
return df | |
return input_dataframe | |
def export_json_data(dataframe): | |
if dataframe is not None and not dataframe.empty: | |
# Copy the dataframe and lowercase the column names | |
df_copy = dataframe.copy() | |
df_copy.columns = df_copy.columns.str.lower() | |
json_str = df_copy.to_json(orient="records", indent=2) | |
# create a temporary file with the json string | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as temp_file: | |
temp_file.write(json_str.encode("utf-8")) | |
temp_file_path = temp_file.name | |
return temp_file_path | |
return None | |
def append_example_to_input_dataframe( | |
new_example_input, new_example_output, input_dataframe | |
): | |
try: | |
if input_dataframe.empty or (input_dataframe.iloc[-1] == ['', '']).all(): | |
input_dataframe = pd.DataFrame([[new_example_input, new_example_output]], columns=["Input", "Output"]) | |
else: | |
input_dataframe = pd.concat([input_dataframe, pd.DataFrame([[new_example_input, new_example_output]], columns=["Input", "Output"])], ignore_index=True) | |
return input_dataframe, None, None, None, None | |
except KeyError: | |
raise gr.Error("Invalid input or output") | |
def delete_selected_dataframe_row(row_index, input_dataframe): | |
if row_index is not None and row_index > 0: | |
input_dataframe = input_dataframe.drop(index=row_index - 1).reset_index( | |
drop=True | |
) | |
return input_dataframe, None, None, None, None | |
return input_dataframe, None, None, None, None | |
def update_selected_dataframe_row( | |
selected_example_input, selected_example_output, selected_row_index, input_dataframe | |
): | |
if selected_row_index is not None and selected_row_index > 0: | |
input_dataframe.iloc[selected_row_index - 1] = [ | |
selected_example_input, | |
selected_example_output, | |
] | |
return input_dataframe, None, None, None, None | |
return input_dataframe, None, None, None, None | |
def input_dataframe_change( | |
input_dataframe, selected_group_mode, selected_group_index, selected_group_input, selected_group_output | |
): | |
if len(input_dataframe) <= 1: | |
return None, None, None, None | |
return ( | |
selected_group_mode, | |
selected_group_index, | |
selected_group_input, | |
selected_group_output, | |
) | |
def generate_suggestions(config, description, examples, model_name, temperature): | |
try: | |
input_json = convert_examples_to_json(examples) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_suggestions(input_json, description) | |
return gr.update(choices=result["suggestions"]) | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def apply_suggestions(config, description, suggestions, examples, model_name, temperature): | |
try: | |
input_json = convert_examples_to_json(examples) | |
model = initialize_llm(config, model_name, {'temperature': temperature, 'max_retries': 3}) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.update_description(input_json, description, suggestions) | |
return result["description"], gr.update(choices=result["suggestions"], value=[]) | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
def evaluate_output( | |
config, | |
expected_output: str, | |
output: str, | |
acceptance_criteria: str, | |
prompt_analyzer_model_name: str, | |
prompt_analyzer_temperature: float, | |
prompt_template_group: Optional[str] = None | |
) -> str: | |
# Package the required variables into an AgentState dictionary | |
state = AgentState( | |
acceptance_criteria=acceptance_criteria, | |
expected_output=expected_output, | |
output=output | |
) | |
# Initialize the acceptance criteria model | |
llm = initialize_llm(config, prompt_analyzer_model_name, {'temperature': prompt_analyzer_temperature}).bind(response_format={"type": "json_object"}) | |
# Get the prompt templates | |
if prompt_template_group is None: | |
prompt_template_group = 'default' | |
prompt_templates = prompt_templates_confz2langchain( | |
config.prompt_templates[prompt_template_group] | |
) | |
# Create the MetaPromptGraph instance | |
acceptance_criteria_graph = MetaPromptGraph( | |
llms={NODE_PROMPT_ANALYZER: llm}, | |
prompts=prompt_templates, | |
verbose=config.verbose | |
) | |
# Run the node graph for evaluation | |
output_state = acceptance_criteria_graph.run_node_graph(NODE_PROMPT_ANALYZER, state) | |
# Return the evaluation result | |
return output_state.get('analysis', "Error: The output state does not contain a valid 'analysis'") | |