yaleh commited on
Commit
68c6b73
·
1 Parent(s): 2d1b8d7

Update meta_prompt_graph.py to handle llms as a single BaseLanguageModel or a dictionary of BaseLanguageModels

Browse files
meta_prompt.ipynb → demo/cot_meta_prompt.ipynb RENAMED
File without changes
meta_prompt.py → demo/cot_meta_prompt.py RENAMED
@@ -20,7 +20,7 @@ import os
20
  import openai
21
 
22
  import gradio as gr
23
- from prompt_ui import PromptUI
24
 
25
  class ChatbotApp:
26
  def __init__(self, args):
 
20
  import openai
21
 
22
  import gradio as gr
23
+ from demo.prompt_ui import PromptUI
24
 
25
  class ChatbotApp:
26
  def __init__(self, args):
default_meta_prompts.py → demo/default_meta_prompts.py RENAMED
File without changes
demo/examples/log.csv ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ User Message,Expected Output,Acceptance Criteria
2
+ How do I reverse a list in Python?,Use the `[::-1]` slicing technique or the `list.reverse()` method.,"Similar in meaning, text length and style."
3
+ (2+8)*3,"(2+8)*3
4
+ = 10*3
5
+ = 30
6
+ ","
7
+ * Exactly text match.
8
+ * Acceptable differences:
9
+ * Extra or missing spaces.
10
+ * Extra or missing line breaks at the beginning or end of the output.
11
+ "
12
+ "Here is the GDP data in billions of US dollars (USD) for these years:
13
+
14
+ Germany:
15
+
16
+ 2015: $3,368.29 billion
17
+ 2016: $3,467.79 billion
18
+ 2017: $3,677.83 billion
19
+ 2018: $3,946.00 billion
20
+ 2019: $3,845.03 billion
21
+ France:
22
+
23
+ 2015: $2,423.47 billion
24
+ 2016: $2,465.12 billion
25
+ 2017: $2,582.49 billion
26
+ 2018: $2,787.86 billion
27
+ 2019: $2,715.52 billion
28
+ United Kingdom:
29
+
30
+ 2015: $2,860.58 billion
31
+ 2016: $2,650.90 billion
32
+ 2017: $2,622.43 billion
33
+ 2018: $2,828.87 billion
34
+ 2019: $2,829.21 billion
35
+ Italy:
36
+
37
+ 2015: $1,815.72 billion
38
+ 2016: $1,852.50 billion
39
+ 2017: $1,937.80 billion
40
+ 2018: $2,073.90 billion
41
+ 2019: $1,988.14 billion
42
+ Spain:
43
+
44
+ 2015: $1,199.74 billion
45
+ 2016: $1,235.95 billion
46
+ 2017: $1,313.13 billion
47
+ 2018: $1,426.19 billion
48
+ 2019: $1,430.38 billion
49
+ ","Year,Germany,France,United Kingdom,Italy,Spain
50
+ 2016-2015,2.96%,1.71%,-7.35%,2.02%,3.04%
51
+ 2017-2016,5.08%,4.78%,-1.07%,4.61%,6.23%
52
+ 2018-2017,7.48%,7.99%,7.89%,7.10%,8.58%
53
+ 2019-2018,-2.56%,-2.59%,0.01%,-4.11%,0.30%
54
+ ","
55
+ * Strict text matching of the header row and first column(year).
56
+ * Acceptable differences:
57
+ * Differences in digital/percentage values in the table, even significant ones.
58
+ * Extra or missing spaces.
59
+ * Extra or missing line breaks.
60
+ "
61
+ "Gene sequence: ATGGCCATGGCGCCCAGAACTGAGATCAATAGTACCCGTATTAACGGGTGA
62
+ Species: Escherichia coli","{
63
+ ""Gene Sequence Analysis Results"": {
64
+ ""Basic Information"": {
65
+ ""Sequence Length"": 54,
66
+ ""GC Content"": ""51.85%""
67
+ },
68
+ ""Nucleotide Composition"": {
69
+ ""A"": {""Count"": 12, ""Percentage"": ""22.22%""},
70
+ ""T"": {""Count"": 11, ""Percentage"": ""20.37%""},
71
+ ""G"": {""Count"": 16, ""Percentage"": ""29.63%""},
72
+ ""C"": {""Count"": 15, ""Percentage"": ""27.78%""}
73
+ },
74
+ ""Codon Analysis"": {
75
+ ""Start Codon"": ""ATG"",
76
+ ""Stop Codon"": ""TGA"",
77
+ ""Codon Table"": [
78
+ {""Codon"": ""ATG"", ""Amino Acid"": ""Methionine"", ""Position"": 1},
79
+ {""Codon"": ""GCC"", ""Amino Acid"": ""Alanine"", ""Position"": 2},
80
+ {""Codon"": ""ATG"", ""Amino Acid"": ""Methionine"", ""Position"": 3},
81
+ // ... other codons ...
82
+ {""Codon"": ""TGA"", ""Amino Acid"": ""Stop Codon"", ""Position"": 18}
83
+ ]
84
+ },
85
+ ""Potential Function Prediction"": {
86
+ ""Protein Length"": 17,
87
+ ""Possible Functional Domains"": [
88
+ {""Domain Name"": ""ABC Transporter"", ""Start Position"": 5, ""End Position"": 15, ""Confidence"": ""75%""},
89
+ {""Domain Name"": ""Membrane Protein"", ""Start Position"": 1, ""End Position"": 17, ""Confidence"": ""60%""}
90
+ ],
91
+ ""Secondary Structure Prediction"": {
92
+ ""α-helix"": [""2-8"", ""12-16""],
93
+ ""β-sheet"": [""9-11""],
94
+ ""Random Coil"": [""1"", ""17""]
95
+ }
96
+ },
97
+ ""Homology Analysis"": {
98
+ ""Most Similar Sequences"": [
99
+ {
100
+ ""Gene Name"": ""abcT"",
101
+ ""Species"": ""Salmonella enterica"",
102
+ ""Similarity"": ""89%"",
103
+ ""E-value"": ""3e-25""
104
+ },
105
+ {
106
+ ""Gene Name"": ""yojI"",
107
+ ""Species"": ""Escherichia coli"",
108
+ ""Similarity"": ""95%"",
109
+ ""E-value"": ""1e-30""
110
+ }
111
+ ]
112
+ },
113
+ ""Mutation Analysis"": {
114
+ ""SNP Sites"": [
115
+ {""Position"": 27, ""Wild Type"": ""A"", ""Mutant"": ""G"", ""Amino Acid Change"": ""Glutamine->Arginine""},
116
+ {""Position"": 42, ""Wild Type"": ""C"", ""Mutant"": ""T"", ""Amino Acid Change"": ""None (Synonymous Mutation)""}
117
+ ]
118
+ }
119
+ }
120
+ }","* Consistent with Expected Output:
121
+ * Formats of all JSON sections
122
+ * Data types of all JSON fields
123
+ * Top layer sections
124
+ * Acceptable differences:
125
+ * Extra or missing spaces
126
+ * Extra or missing line breaks at the beginning or end of the output
127
+ * Differences in JSON field values
128
+ * JSON wrapped in backquotes"
129
+ 今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。,"{
130
+ ""文本分析结果"": {
131
+ ""情感分析"": {
132
+ ""整体情感"": ""积极"",
133
+ ""情感得分"": 0.82,
134
+ ""情感细分"": {
135
+ ""乐观"": 0.75,
136
+ ""兴奋"": 0.60,
137
+ ""期待"": 0.85
138
+ }
139
+ },
140
+ ""实体识别"": [
141
+ {""实体"": ""北京"", ""类型"": ""地点"", ""起始位置"": 7, ""结束位置"": 9},
142
+ {""实体"": ""国家会议中心"", ""类型"": ""地点"", ""起始位置"": 9, ""结束位置"": 15},
143
+ {""实体"": ""阿里巴巴集团"", ""类型"": ""组织"", ""起始位置"": 16, ""结束位置"": 22},
144
+ {""实体"": ""马云"", ""类型"": ""人物"", ""起始位置"": 26, ""结束位置"": 28},
145
+ {""实体"": ""100亿元"", ""类型"": ""金额"", ""起始位置"": 32, ""结束位置"": 37},
146
+ {""实体"": ""人民币"", ""类型"": ""货币"", ""起始位置"": 37, ""结束位置"": 40},
147
+ {""实体"": ""中国"", ""类型"": ""地点"", ""起始位置"": 71, ""结束位置"": 73}
148
+ ],
149
+ ""关键词提取"": [
150
+ {""关键词"": ""农村电商"", ""权重"": 0.95},
151
+ {""关键词"": ""马云"", ""权重"": 0.85},
152
+ {""关键词"": ""投资"", ""权重"": 0.80},
153
+ {""关键词"": ""阿里巴巴"", ""权重"": 0.75},
154
+ {""关键词"": ""经济机遇"", ""权重"": 0.70}
155
+ ]
156
+ }
157
+ }","* Consistent with Expected Output:
158
+ * Formats of all JSON sections
159
+ * Data types of all JSON fields
160
+ * Top layer sections
161
+ * Acceptable differences:
162
+ * Differences in digital values in the table.
163
+ * Extra or missing spaces.
164
+ * Extra or missing line breaks at the beginning or end of the output.
165
+ * Differences in JSON field values
166
+ * Differences in section/item orders.
167
+ * JSON wrapped in backquotes."
168
+ Low-noise amplifier,"A '''low-noise amplifier''' ('''LNA''') is an electronic component that amplifies a very low-power [[signal]] without significantly degrading its [[signal-to-noise ratio]] (SNR). Any [[electronic amplifier]] will increase the power of both the signal and the [[Noise (electronics)|noise]] present at its input, but the amplifier will also introduce some additional noise. LNAs are designed to minimize that additional noise, by choosing special components, operating points, and [[Circuit topology (electrical)|circuit topologies]]. Minimizing additional noise must balance with other design goals such as [[power gain]] and [[impedance matching]].
169
+
170
+ LNAs are found in [[Radio|radio communications]] systems, [[Amateur Radio]] stations, medical instruments and [[electronic test equipment]]. A typical LNA may supply a power gain of 100 (20 [[decibels]] (dB)) while decreasing the SNR by less than a factor of two (a 3 dB [[noise figure]] (NF)). Although LNAs are primarily concerned with weak signals that are just above the [[noise floor]], they must also consider the presence of larger signals that cause [[intermodulation distortion]].","* Consistent with Expected Output:
171
+ * Language
172
+ * Text length
173
+ * Text style
174
+ * Text structures
175
+ * Cover all the major content of Expected Output.
176
+ * Acceptable differences:
177
+ * Minor format differences.
178
+ * Expression differences.
179
+ * Numerical differences.
180
+ * Additional content in Actual Output.
181
+ * Missing minor content in Actual Output."
182
+ What is the meaning of life?,"[
183
+ {""persona"": ""Philosopher"", ""prompt"": ""Explore the concept of life's meaning through the lens of existentialism and purpose-driven existence.""},
184
+ {""persona"": ""Scientist"", ""prompt"": ""Examine the biological and evolutionary perspectives on the function and significance of life.""},
185
+ {""persona"": ""Child"", ""prompt"": ""Imagine you're explaining to a curious 7-year-old what makes life special and important.""}
186
+ ]","* Consistent with Expected Output:
187
+ * Formats of all JSON sections
188
+ * Data types and formats of all JSON fields
189
+ * Top layer sections
190
+ * Acceptable differences:
191
+ * Differences in field values
192
+ * Extra or missing spaces
193
+ * Extra or missing line breaks at the beginning or end of the output
194
+ * JSON wrapped in backquotes"
195
+ "<?php
196
+ $username = $_POST['username'];
197
+ $password = $_POST['password'];
198
+
199
+ $query = ""SELECT * FROM users WHERE username = '$username' AND password = '$password'"";
200
+ $result = mysqli_query($connection, $query);
201
+
202
+ if (mysqli_num_rows($result) > 0) {
203
+ echo ""Login successful"";
204
+ } else {
205
+ echo ""Login failed"";
206
+ }
207
+ ?>","security_analysis:
208
+ vulnerabilities:
209
+ - type: SQL Injection
210
+ severity: Critical
211
+ description: Unsanitized user input directly used in SQL query
212
+ mitigation: Use prepared statements or parameterized queries
213
+ - type: Password Storage
214
+ severity: High
215
+ description: Passwords stored in plain text
216
+ mitigation: Use password hashing (e.g., bcrypt) before storage
217
+ additional_issues:
218
+ - Lack of input validation
219
+ - No CSRF protection
220
+ - Potential for timing attacks in login logic
221
+ overall_risk_score: 9.5/10
222
+ recommended_actions:
223
+ - Implement proper input sanitization
224
+ - Use secure password hashing algorithms
225
+ - Add CSRF tokens to forms
226
+ - Consider using a secure authentication library","* Consistent with Expected Output:
227
+ * Formats of all YAML sections
228
+ * Data types and formats of all YAML fields
229
+ * Top layer sections
230
+ * Acceptable differences:
231
+ * Differences in field values
232
+ * Extra or missing spaces
233
+ * Extra or missing line breaks at the beginning or end of the output
234
+ * YAML wrapped in backquotes"
demo/gradio_meta_prompt.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from meta_prompt import MetaPromptGraph, AgentState
3
+ from langchain_openai import ChatOpenAI
4
+
5
+ # Initialize the MetaPromptGraph with the required LLMs
6
+ MODEL_NAME = "anthropic/claude-3.5-sonnet:haiku"
7
+ # MODEL_NAME = "meta-llama/llama-3-70b-instruct"
8
+ # MODEL_NAME = "deepseek/deepseek-chat"
9
+ # MODEL_NAME = "google/gemma-2-9b-it"
10
+ # MODEL_NAME = "recursal/eagle-7b"
11
+ # MODEL_NAME = "meta-llama/llama-3-8b-instruct"
12
+ llm = ChatOpenAI(model_name=MODEL_NAME)
13
+ meta_prompt_graph = MetaPromptGraph(llms=llm)
14
+
15
+ def process_message(user_message, expected_output, acceptance_criteria, recursion_limit: int=25):
16
+ # Create the input state
17
+ input_state = AgentState(
18
+ user_message=user_message,
19
+ expected_output=expected_output,
20
+ acceptance_criteria=acceptance_criteria
21
+ )
22
+
23
+ # Get the output state from MetaPromptGraph
24
+ output_state = meta_prompt_graph(input_state, recursion_limit=recursion_limit)
25
+
26
+ # Validate the output state
27
+ system_message = ''
28
+ output = ''
29
+
30
+ if 'best_system_message' in output_state and output_state['best_system_message'] is not None:
31
+ system_message = output_state['best_system_message']
32
+ else:
33
+ system_message = "Error: The output state does not contain a valid 'best_system_message'"
34
+
35
+ if 'best_output' in output_state and output_state['best_output'] is not None:
36
+ output = output_state["best_output"]
37
+ else:
38
+ output = "Error: The output state does not contain a valid 'best_output'"
39
+
40
+ return system_message, output
41
+
42
+ # Create the Gradio interface
43
+ iface = gr.Interface(
44
+ fn=process_message,
45
+ inputs=[
46
+ gr.Textbox(label="User Message"),
47
+ gr.Textbox(label="Expected Output"),
48
+ gr.Textbox(label="Acceptance Criteria"),
49
+ gr.Number(label="Recursion Limit", value=25, precision=0, minimum=1, maximum=100, step=1)
50
+ ],
51
+ outputs=[gr.Textbox(label="System Message"), gr.Textbox(label="Output")],
52
+ title="MetaPromptGraph Chat Interface",
53
+ description="A chat interface for MetaPromptGraph to process user inputs and generate system messages.",
54
+ examples="demo/examples"
55
+ )
56
+
57
+ # Launch the Gradio app
58
+ iface.launch()
langgraph_meta_prompt.ipynb → demo/langgraph_meta_prompt.ipynb RENAMED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": null,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -13,9 +13,17 @@
13
  },
14
  {
15
  "cell_type": "code",
16
- "execution_count": null,
17
  "metadata": {},
18
- "outputs": [],
 
 
 
 
 
 
 
 
19
  "source": [
20
  "import sys\n",
21
  "import os\n",
@@ -43,7 +51,7 @@
43
  },
44
  {
45
  "cell_type": "code",
46
- "execution_count": null,
47
  "metadata": {},
48
  "outputs": [],
49
  "source": [
@@ -217,20 +225,6 @@
217
  "detailed analysis according to `Acceptance Criteria`. Then you decide whether `Actual Output`\n",
218
  "is acceptable.\n",
219
  "\n",
220
- "# Expected Output\n",
221
- "\n",
222
- "```\n",
223
- "{expected_output}\n",
224
- "```\n",
225
- "\n",
226
- "# Actual Output\n",
227
- "\n",
228
- "```\n",
229
- "{output}\n",
230
- "```\n",
231
- "\n",
232
- "----\n",
233
- "\n",
234
  "Provide your analysis in the following format:\n",
235
  "\n",
236
  "```\n",
@@ -250,9 +244,23 @@
250
  "{acceptance_criteria}\n",
251
  "```\n",
252
  "\"\"\"\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  "\n",
254
  " comparison_prompt = ChatPromptTemplate.from_messages([\n",
255
- " (\"system\", comparison_prompt_template)\n",
 
256
  " ])\n",
257
  " \n",
258
  " # Format the prompt with the current state\n",
@@ -432,6 +440,23 @@
432
  "Read the following inputs and outputs of an LLM prompt, and also analysis about them.\n",
433
  "Then suggest how to improve System Prompt.\n",
434
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
  "System Prompt:\n",
436
  "```\n",
437
  "{system_message}\n",
@@ -458,26 +483,11 @@
458
  "```\n",
459
  "{analysis}\n",
460
  "```\n",
461
- "\n",
462
- "* The goal is to improve the System Prompt to match the Expected Output better.\n",
463
- "* Ignore all Acceptable Differences and focus on Unacceptable Differences.\n",
464
- "* Suggest formal changes first, then semantic changes.\n",
465
- "* Provide your suggestions in a Markdown list, nothing else. Output only the\n",
466
- " suggestions related with Unacceptable Differences.\n",
467
- " * Use `... should ...` to clearly state the desired output.\n",
468
- " * Figue out the contexts of the System Message that conflict with the suggestions,\n",
469
- " and suggest modification or deletion.\n",
470
- "* Expected Output text should not appear in System Message as an example. But\n",
471
- " it's OK to use some similar text as an example instead.\n",
472
- " * Ask to remove the Expected Output text or text highly similar to Expected Output\n",
473
- " from System Message, if it's present.\n",
474
- "* Provide format examples or detected format name, if System Message does not.\n",
475
- " * Specify the detected format name (e.g. XML, JSON, etc.) of Expected Output, if\n",
476
- " System Message does not mention it.\n",
477
  "\"\"\"\n",
478
  "\n",
479
  " suggester_prompt = ChatPromptTemplate.from_messages([\n",
480
- " (\"system\", suggester_prompt_template)\n",
 
481
  " ])\n",
482
  " \n",
483
  " # Format the prompt with the current state\n",
@@ -552,9 +562,20 @@
552
  },
553
  {
554
  "cell_type": "code",
555
- "execution_count": null,
556
  "metadata": {},
557
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
558
  "source": [
559
  "from IPython.display import Image, display\n",
560
  "\n",
@@ -567,9 +588,682 @@
567
  },
568
  {
569
  "cell_type": "code",
570
- "execution_count": null,
571
  "metadata": {},
572
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573
  "source": [
574
  "initial_states = [\n",
575
  " AgentState(\n",
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
13
  },
14
  {
15
  "cell_type": "code",
16
+ "execution_count": 2,
17
  "metadata": {},
18
+ "outputs": [
19
+ {
20
+ "name": "stdout",
21
+ "output_type": "stream",
22
+ "text": [
23
+ "Not running in Google Colab\n"
24
+ ]
25
+ }
26
+ ],
27
  "source": [
28
  "import sys\n",
29
  "import os\n",
 
51
  },
52
  {
53
  "cell_type": "code",
54
+ "execution_count": 3,
55
  "metadata": {},
56
  "outputs": [],
57
  "source": [
 
225
  "detailed analysis according to `Acceptance Criteria`. Then you decide whether `Actual Output`\n",
226
  "is acceptable.\n",
227
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
  "Provide your analysis in the following format:\n",
229
  "\n",
230
  "```\n",
 
244
  "{acceptance_criteria}\n",
245
  "```\n",
246
  "\"\"\"\n",
247
+ " human_prompt_template = \"\"\"\n",
248
+ "# Expected Output\n",
249
+ "\n",
250
+ "```\n",
251
+ "{expected_output}\n",
252
+ "```\n",
253
+ "\n",
254
+ "# Actual Output\n",
255
+ "\n",
256
+ "```\n",
257
+ "{output}\n",
258
+ "```\n",
259
+ "\"\"\"\n",
260
  "\n",
261
  " comparison_prompt = ChatPromptTemplate.from_messages([\n",
262
+ " (\"system\", comparison_prompt_template),\n",
263
+ " (\"human\", human_prompt_template)\n",
264
  " ])\n",
265
  " \n",
266
  " # Format the prompt with the current state\n",
 
440
  "Read the following inputs and outputs of an LLM prompt, and also analysis about them.\n",
441
  "Then suggest how to improve System Prompt.\n",
442
  "\n",
443
+ "* The goal is to improve the System Prompt to match the Expected Output better.\n",
444
+ "* Ignore all Acceptable Differences and focus on Unacceptable Differences.\n",
445
+ "* Suggest formal changes first, then semantic changes.\n",
446
+ "* Provide your suggestions in a Markdown list, nothing else. Output only the\n",
447
+ " suggestions related with Unacceptable Differences.\n",
448
+ " * Use `... should ...` to clearly state the desired output.\n",
449
+ " * Figue out the contexts of the System Message that conflict with the suggestions,\n",
450
+ " and suggest modification or deletion.\n",
451
+ "* Expected Output text should not appear in System Message as an example. But\n",
452
+ " it's OK to use some similar text as an example instead.\n",
453
+ " * Ask to remove the Expected Output text or text highly similar to Expected Output\n",
454
+ " from System Message, if it's present.\n",
455
+ "* Provide format examples or detected format name, if System Message does not.\n",
456
+ " * Specify the detected format name (e.g. XML, JSON, etc.) of Expected Output, if\n",
457
+ " System Message does not mention it.\n",
458
+ "\"\"\"\n",
459
+ " human_prompt_template = \"\"\"\n",
460
  "System Prompt:\n",
461
  "```\n",
462
  "{system_message}\n",
 
483
  "```\n",
484
  "{analysis}\n",
485
  "```\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486
  "\"\"\"\n",
487
  "\n",
488
  " suggester_prompt = ChatPromptTemplate.from_messages([\n",
489
+ " (\"system\", suggester_prompt_template),\n",
490
+ " (\"human\", human_prompt_template)\n",
491
  " ])\n",
492
  " \n",
493
  " # Format the prompt with the current state\n",
 
562
  },
563
  {
564
  "cell_type": "code",
565
+ "execution_count": 4,
566
  "metadata": {},
567
+ "outputs": [
568
+ {
569
+ "data": {
570
+ "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAH8AaoDASIAAhEBAxEB/8QAHQABAAIDAQEBAQAAAAAAAAAAAAYHBAUIAwIJAf/EAFkQAAEDBAADAggICgUJBgQHAAEAAgMEBQYRBxIhEzEIFBUWIkFR0TJUVVZhkZSzFyM2cXaSk5XS4UJTdYGiCSQlMzc4UmKhQ3KxtMHDNFd0lmNmgoWk09T/xAAbAQEAAwEBAQEAAAAAAAAAAAAAAQIDBAUGB//EADoRAQABAgIIBAQDBwUBAQAAAAABAgMRUQQSExQhMVKRQaHR8BVTYXGSorEFIjJigcHhM0JjcrIjNP/aAAwDAQACEQMRAD8A/VNERAREQEREBERAREQEREBERAREQEREBYVZe7dbpRFV19LSykcwZNM1jiPbon6Fmqqsnt9LXcTLr4zTQ1HLa6Ll7WMO1+Mqu7aiuum1bru18qYx4feI/u3sWttXFGOCwPOqyfLFB9qZ7086rJ8sUH2pnvVeeb9r+TaP9g33J5v2v5No/wBg33Lyviuj9FXeHpfDv5vJYfnVZPlig+1M96edVk+WKD7Uz3qvPN+1/JtH+wb7k837X8m0f7BvuT4ro/RV3g+HfzeSw/OqyfLFB9qZ7086rJ8sUH2pnvVeeb9r+TaP9g33J5v2v5No/wBg33J8V0foq7wfDv5vJYfnVZPlig+1M96edVk+WKD7Uz3qvPN+1/JtH+wb7k837X8m0f7BvuT4ro/RV3g+HfzeSw/OqyfLFB9qZ71602Q2qsnbDT3Ojnmf8GOOdjnH8wBVb+b9r+TaP9g33LGNqoqLKMUkp6Ongk8pgc0UTWnXYTdNgLo0fT7GkXItU0zEz9slLmg6lE1a3JcKIi7nkiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgKsr7/tLu/wDZlD95VKzVWV9/2l3f+zKH7yqXPpf/AOS99o/9Uu7Qv9eP6vVFHMj4k4jh9cyiv2U2WyVj4xMynuNwhp5HMJIDg17gSNtcN92wfYtX+HPhvoH8IOLaPTflqm/jXxUUVTxiH0U1Uxzl7cQeJ1Bw9ls1LNbrlerpeJ3wUNttMLZJ5ixhkkI53MaA1oJJLh9G1Dcj43Xm2cTMLslHh95q7be7TPcJohBCyqY4OiDWkSTt5ezDyZARv0mcu9OAcTLpY+LGPU8ON2ii4mx0tTzvlx+/08FVa5eU9nNHNzjldvY6OB1vo4dFoocT4kY7LwtyWttgzPILPaay23ingrYYZS6fsXMkD5C1j+XsQ1x3sk7G11UUUREa0cePOfpOHuWFVVUzw5cOSeZRxroMOyI2+647kVNbG1MNI/ITQt8nMklLQzcnPzcpc9reYMLQTolKjjTR+ft3xC347f7zdbS+mFa+hgh7CFk7A9khe+Vo1o9R8L0XaaQCVSnE3g1mOVT5p2uFx5HfKu6MrrTkVXdIWspaJj4pGUkMbnc0b9Mcw6a1ri8uL1dWB4tdbVxU4kXutojTW+8vtz6KR0jHGQRUoZICGuJbyu6ddb9Wx1Sqi1TTjznDP7es9iKrk1YeGPr/AIYPAHiveOKuNT1t3x2ttMsdVVRtqnsibTStZUyxtYzlme/nY1gD+YAcwPKSNK01S/Curr+DdmudjzOlo7Bj9Jca6opMmrLpTx0tUJ6p80bOVzw9j9Su2HDXodCdqYfhz4b/APzBxX99U38ayuUTNczRHD6L0VRFMRVPH6pwsCq/KTFP7UH3Ey0tj4q4Tk1zit1nzCwXa4S7MdJQ3OCaV+gSdMa4k6AJPTuBW6qvykxT+1B9xMu39nRNOl0RMZ/pKt+YmzVhktdERfVvlRERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFWV9/wBpd3/syh+8qlZqi9+4e0F/vD7nJV3CkqnwsgeaSo7NrmsLy3Y13gvd9arctxes3LUzhrRH6xP9nTo9yLVyK6kalpYZnc0kTJHa1tzQSvjyfS/Fof2YW6/BTQ/LF7+2/wAk/BTQ/LF7+2/yXh/CJ+bHaXrb/aylqYoI4ARHGyMHv5WgbXotl+Cmh+WL39t/kn4KaH5Yvf23+SfB/wDljtJ8QtZS1qKtMqpa20eEzguEU97ugsV3s9dW1THVG5DJFrk07XQde5W7+Cmh+WL39t/knwf/AJY7Sn4haylqpImTN5ZGNe32OGwvLyfS/Fof2YW6/BTQ/LF7+2/yT8FND8sXv7b/ACT4RPzY7Sjf7WUtPHSQRPDmQxscO4tYAVjVX5SYp/ag+4mUh/BTQ/LF7+2/yXtQcMbdQ3SirjX3OqlpJO2iZU1XOwO5XN2Rrr0cV16L+zo0e9F2bkThj4Tkzu6bbrommInimCIi9N4giIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOd8+/wB97hX+jl1/8Wrohc759/vvcK/0cuv/AItXRCAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIixrlcqSzW6qr6+qhoaClifPUVVTII4oY2guc97iQGtABJJ6ABBQGff773Cv8ARy6/+LV0QuRM241cPKvww+Gt6gzzGZrPSWC5Q1FwjvFO6nhkcW8rHyB/K1x9QJ2V1LjmW2PMKapqLDebfe6emndSzy26qjqGRTNALo3FhIa8BzSWnqNj2oNsiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLW33IKDHKMVNfP2TXO5I42tL5JX6J5WMGy52gToDuBPcCpiJqnCITEY8IbJFXs/EG+1biaGyU1JD05XXGqPaEfSyNpA/XP9yx/PLLvi9l+uZbbLOqO/o6o0W9P+1ZSKtfPLLvi9l+uZPPLLvi9l+uZNlHVHdO6XsllIq188su+L2X65k88su+L2X65k2UdUdzdL2SylqMvxijzXE71jtx5/J93oZ6Co7N3K7spY3Mfo+o6ceqhnnll3xey/XMnnll3xey/XMmyjqjubpeyfiznnC2+YHxRueB1NK+pvlJX+IRxQtJNQ5zgIiwd5Dw5rm+shwX7R+DfwcpuBPB3H8TiDHVsEXb3CZn/bVb/Sldv1gH0W/8rWqrMk4NwZVxvsXFSuoLccktEIiiijkeKaZzQ7s5ZGcvM57Ob0SHD4Leh5QrW88su+L2X65k2UdUdzdL2SykVa+eWXfF7L9cyeeWXfF7L9cybKOqO5ul7JZSKtfPLLvi9l+uZPPLLvi9l+uZNlHVHc3S9kspFWvnll3xey/XMnnll3xey/XMmyjqjubpeyWUirqHPMkpiDU2e31sexsUtW+N+vXoPYQfzFw/OpXjmW0GTMkbTmSCrhAM1FUt5J4t70S3Z2Do6c0lp0dE6KrNuqIxjjH0ljXZuW+NUN0iIsmIiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg8aurhoKSapqJBFBCx0kkju5rQNkn8wCqumqp7/Um91zXNqKhv4iB52KWA6Ijb7CdNc8+t3r01oEu4rPczh9eWj4MkTYpPZ2b3ta/f0cpKjq1n9y1jHjMx2w/XHyetoNETjXIiprOrdU5X4QFjx6W+3u2Wh+MVlZJT2i5S0YklbVU7GucY3A7Aeeo0fVvRINb2/IMlyaXDcbflt3bTwZzdbC67UtUY6ivooKeZzRI9ug53Tk59b2zmGnAFcuD0Zu4Thg6tRUJFjlXl/E/J8Rny3JLLZcVtVCaEUV3ljqJ3ziVz6maYkvl5TGGgPJb0Ox1UT4Y3y+8a77iFPfMkvdDT1WFvrakWaufReM1Eda6BtRuMggub6Xo6B2N7A0mCNrxwwdTouVeHV1yCgxbgzl1Rld9ulyyG8+SLnBXVrpKaeF0VVy/ifgNc0wMIe0BxO+YnaxKeuvdk4GjiTDl2QzZHSX6eKOkq7pJNSVUflV9OKYwOJaQWdAQOYHWiAABOCNtwxw+v6erqmlvVBXXGuoKasgnraEsFVTxvDnwF7eZgeB8ElvUA+og+tZiovhfh9LH4RPFm5Cvuxnpa2he2B1znMD+2omk88XPyPALiGBwIYAA3QA1ecjixjnBpcQNho7z9ChrRVNUYy1eSZVa8RpaWpu1V4pDVVcFDC7s3v5p5nhkbNNB1tzgNnoPWQFtVx/NSV+bcL8B4jXbJ7xXXS85Za55baKwi3U7TcGtbAyn+COz0BzfCLmnZ6kLaU54ocV7jmV3sFbJRVluvdZa7e7znlpKeh7CTlY2WhbSvZLsAOdzuJcH9C0a0wYxe+jqxFzTkuQ5VZsjv3DJ93rmXzLK+krLRXxVMjpKOkmBNwELydtbB4vMWAa5e2j1rosGsHETihl+etsdXUUnm/cnWi3NjymW3Ck5ImOZLJTtppBUc5cX80riHD0QBrZYLTe8MHR9JlVrrsluGPwVXPd7fBDU1NP2bx2ccpeI3cxHKdmN/QEka662FtVzdPkWQYXlPFm91Laeoym2YHbKuUQAuhdVRx1jnloIBLOcE60OnsX1Tm7cPbtwyqqbMb3kMmWQTxXKC41zqiKY+JOqBUQMPSHke0dGaHK/WvWhF3OPeODo9FypiFVesY4ccGcyiy3ILleL/cLbb7hR3S5yVUFbFU7bJqJ5Ia9g9MPbo+geYnZK8MTPFfina58wslb4rc33SoZB2+TyxUlKyGpdH4vJbxSuYRyM0S55eebm5hsAMEbbww4usljVkE/PFV0Uvi9ypiXU829D1EsfrvY7QDh+YjRDSKe4P2quyTOc+vNzyK91Udpyqqo6C2+UJW0kUYgi2DGDp43JsNdtrS0FoBJJupWpqmiYqhpGFynjHBO8avsWS2KjuUTDEJ2bfC4guieDp8ZI6EtcHNOvWFs1B+FD3eTb3F/2UV2mEfs05rHu/xvf/ftThdF2mKa5iOT5q5TqVzTkIiLJmIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgwL/Z4sgsdwtkznMirIHwOe34TOZpHMPpG9j6Qq0tVTPLTuhrGCK40ruwq4gd8koAJ/ucCHNPra5p9atpRvKcObfJW1tHOLfdo2cgn5OZkzOumSt6czQSSCCC0k6OnODtaZiqnUq4Ze/q7dGv7GrCrlKgs84JUvEXinar7eWsnsVHZaigMENZPTVInfNE9rmuiLTy8jJAfT/pDofVKbfwtxW00uN01FZ4aSnxyV89rige9jad72PY92gfSJbI/fNvZcT39VIp6fILa4sq8dqJyNDtrdLHNG72kBxa8f3tWP5QuHzbvf2UfxKN3ueEY/1h68XLM/vYxxR3N+D+I8Ra6Gsv9p8bq4oTTCeGpmp3vhJ2YnmJ7S9m9nkdtvU9Oq2luwSw2i90t2obbFSV1JbhaIHQlzWRUgeHiJsYPIACB11vprelneULh82739lH8SjObcXrBw2jpH5W6XHRV8/iwubo4HT8uufkDngu1zN3reuYe0Ju93JbaWcccYZdHwrxe32XHbTT2vs7fj1WK62Q+MSnxecCQB+y7buksnRxI9Lu6DUD4XeDVYMVpKGuyC3U9yySkuVXcI6iOrnkpmPfUyyRPbC4iPtGsewc3JsFvQnQKxqrwz+E9G/lkyWNx/8AwgJB9bSVadjys5LZaC7Wuy3etttdAyppqmKl22WN7Q5rh6XcQQU3e7krrWZmJxhqb/wts9wyV+V0FJDSZe2ERw3CR8/YuLQQwzQxysbMG8x1zdddxC86K28SWVtO6syHFZaQSNM0cFhqWSOZv0g1xrXBpI3okHXsPcpP5QuHzbvf2UfxJ5QuHzbvf2UfxJu93JOva560d0If4O3D198N2GPCOs8fZdAIqyoZC2qY8PbK2FsgjDuYAkhvXqDsErMvPAzB79k8mQ1lia66yvjlmkiqZoo53s1yOliY8MkcNDRe0noFK/KFw+bd7+yj+JPKFw+bd7+yj+JN3u5GvYzjyfypxy2Vl+ob1PRxyXWhhlp6aqcPSijlLDIB+fs2fV07zuLZVwOwjNb7JebvY2z3GZjYp5YamaAVLG/BbM2N7WygDoA8O6dO5SryhcPm3e/so/iXxPdq2mgkmfjd85I2l7uWj5joDZ0Adn8wTd7uSZuWZ5zDCrMAx+vyuHJZ7ZG+9xUjqAVXM4F9O7ZMb2g8r29ToOB1s61taHH+BmGYbVT11hskdHcHU0lNBLLUTTNpmP72RNe5wiaTrYjDR9CyMH4u2PiVT1M2Lx1l7bSv7KoZSxtdJA/ZHLIzm5mHoejgO5SbyhcPm3e/so/iTd7uSNpZnjjCr+DHg449w3seL1NfbYKvLbVRNgfWsq554I5S3Uj4WSHlZzdfSaxpOz7VJZeBuDy5Y7JPITY7s+qbXPfFUzRwyVDSC2Z0LXiNzwQDzFpOxvalflC4fNu9/ZR/EnlC4fNu9/ZR/Em73ckRVYiMMYeVgxW14xJdX2yl8WddK19xrD2j39rUPa1rn+kTrYY0aGh07u9Z1dWx2+lfPJzEN0Axg257idNY0etziQAPWSAviHy5WuDKXGbhzEj06t0UEY+kkvLvqaT9ClOM4RLSVUdyvM0VXXx9YaeEf5vTH1ubsbc/R1znXTo1rdu5kWdWcbnLLHj/AI/r/hS5pNu3T+7OMthgtimx/Gqanq9ePSufU1XK7mAlkcXuaD6w0u5QfY0Lfoiiuqa6pqnxfPzM1TjIiIqIEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEUB4t8ccP4KWmKsya5dnU1B5KK10re2ra1+9BkMI6uJJA30aCRshBPlxP4ZmQ434S1pl4Z8Psck4jcQLdM2eG62wtbS2Q8ze1ElU5zWfjGNLDHzFpdyk6cxqnRwvin4UH43NZqrhXw2l6txe3y6u9yj9lXMP8AUscO+NvXRLXDYDlfuCcPsc4ZY7T2LFrPS2S1QD0aelZrZ1ouce97jrq5xJPrKD8gfBH8GW4cbeNhsV8oKmhsuPy9tkEc7HRSR8jy3xZwIBa972lhB0QGvPe3S/Zunp4qSniggjZDBE0MjjjaGtY0DQAA7gB6lrbJiVjxqquVTaLLb7VU3Oc1VdNRUscL6uYkkySloBe8kk8ztnqVtkBERAREQEREFOcVvBos2eXtuWY7carAuIcA/EZLZQGvl/5KmLo2dh0AQ7qQAN66KI2bwksi4R3alxvjvaIrGZniGizi1tc+z1x9Xa9N08h9Yd07z6LQF0isG+WK3ZNaaq13egprnbaphjnpKuJssUrT6nNcCCEGRRVtPcqSGqpJ4qqlmYJIp4Xh7JGkbDmuHQgj1hey5fr+A+eeD1WTXngdcfKmOF5mq+HV8qC6nds7caKdx3C8/wDC46J6ku0GqxeDXhK4txgqZ7MGVOMZpRdK/Fb2zsK2BwHpFrTrtG/8zfVokN3pBbaIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnXIeO+Y8V8gueJ8FrO1wt9S+humcXyJzLdQSsOpI4IyOaolafVrlB1vbTtS3hN4NWPcNrtJktzqqrNM+qR/nWU3w9rUk60WwtO2wM6kBrOuuhJAUT8CP8AIbPf05vH3jV0SgIiICIiAiIgIiICIiAiIgKteMPg+4fxrpqeS9UktFfKMh1BkFrk8XuFE8HbXRzDroHryu23fXW+qspEHMbOKXEbwZeWl4qwyZxgMbgyLPbRTnxmjaTpvj9M3Z11A7Rm/Vvmc5dLUVZDcaOCqppBLTzxtljkHc5rhsH+8FU14aX+61xF/s3/ANxis3AfyExz+zab7pqDfIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIixay50dv141VwU2+o7aRrP8AxKmImeEDKRarzqsnyxQfame9POqyfLFB9qZ71fZ19MpwltUWq86rJ8sUH2pnvTzqsnyxQfame9NnX0yYS2qLVedVk+WKD7Uz3p51WT5YoPtTPemzr6ZMJfnL4b/hWcUccyLOOEl7smORY9Xt1SVsNLUColonu5onh5m5S8BvK48muZr9AK3fAP8ACuzrj3kNbjd6sVnpbBYbOCbhbYZmP7UPijgjfzyuG3MFQ49OvKNa5Tvz/wAo1wgouLGAW3KsafT3TKbDIInUtC8S1FVSSOALWsbtzyx5DgPUDIVYngT8NLLwK4IW2lrq+hp8kvGrldRJUMD45HAckJG+nZs0CP8AiLz602dfTJhLpJFqvOqyfLFB9qZ7086rJ8sUH2pnvTZ19MmEtqi1XnVZPlig+1M96edVk+WKD7Uz3ps6+mTCW1RarzqsnyxQfame9POqyfLFB9qZ702dfTJhLaovClraeuZz01RFUM/4onhw/wCi91SYmOEoERFAIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/ACGz39Obx941dEoCIiAiIgIiiXE+vkpcVfSwvMUtynjoA9pILWvd+MII6g9mH6I7jpXop16opzWppmqYpjxaS+ZRV5TJJDbaqWgszSWGqgPLPVkHRMb/AOhH7HD0nd7S1oBfpYcWs8Di8W2mfI4lzpZYw+RxPeS52yT+crZRRMgiZHGxscbAGta0aAA7gAq7yPjZSWHK7xj9Ni+R3+utFNBWVbrTSxSMZFLz8pHNK0k/i3eiBzH+iHaOlV6rlROEe+eb6Oi3bsU4Jx5AtnydSfsG+5PIFs+TqT9g33Kvq3whMeFTjUFot93yWbI7dJc7a2007HdrGwsDmnnezkcOffp6A5SCQdA+V58Iuw2SsuLZbPfp7daZGQ3e7U1G2Sktkrmtc6OZwfslge3n7Nrw3fUrPaV5y016M1jeQLZ8nUn7BvuTyBbPk6k/YN9yr7KvCAs+L3TIaJtiv95834Iqu5VNrpY5IYKeSPtGy8zpG8w5Q7Ybt3ok8pA2vWycebLeK/xWS03u19vbJbxQS3ClbGy40sYaXvh9MkEB7DyyBjtOB1pNpXnJr0Y4Yp55AtnydSfsG+5PIFs+TqT9g33KvMU8IOz5PUY0JrFf7FR5JG11puF1pY2U9U90faNiDmSPLXloJAcAHaPKT0358E+LV54lVeTQXTGq+1Mt91rKSGrkZC2EMikDGwu5ZnuMwBJcQOTodO7gm0r6pIrpmYiFj+QLZ8nUn7BvuTyBbPk6k/YN9y+7xd6OwWmtudxqGUlBRwvqKiokOmxxtBc5x+gAEqBWPjnb7zdaK3y45kdnnuUUslqN0omQtuXIwyFkR7Q8rywFwbLyHQPsKbSvqlaZpicJTryBbPk6k/YN9yeQLZ8nUn7BvuUIxnjvjeXVdjpbZHWy1NypJ62ohfGxjrVHE4sk8c2/8WRIHR6HMS5p10BKx7Nx/sd4uNpjNov1DabxO2mtl+raIR0NbI4ExhjuYvAeB6Bexod00eoTaV5yrr0Zp/5AtnydSfsG+5PIFs+TqT9g33KE2LjZbspv/iNmsGQXS2eNvojkFPRNNv7VhLX6eXh7mtcC0vawt2D1X3FxtscvD2jzEUlwFsqrkLWyIxx9sJTWGk2Rz65e0G982+XrrfRNpX1Sa9Epn5AtnydSfsG+5PIFs+TqT9g33KssI4z3K+cQc9s12x+tt9nsFaYY7q9sLYIIm07JHGd3bF23bLmlrdchbzcp2BsMT4+2PLLxZ6IWm+WmnvbXus9yulGIaa5BrS/8UQ8uBLAXtEjWFwGxtNpX1SRXRKbPxa19qJoaOOiqW75amj/EStJ9YezR/wCvqUpxjLKuhrYLXeZjVRzu7OkuJaGuL9f6ubWgHH+i8AB3wSA7l56t4bcYqHim50tosV7gtzTOx1yrYI46ftYpezdECJC5zieoLWlugQXBwLRNbnQMulvnpXktEjdB7Tosd3tcD6iCAQfaAtab0zOrcnGP0+3vixuWqL9PDutdFpcLvUmRYnabjNyioqKdjpg3uEmtP19HMCt0q1UzRVNM84fOzGE4CIiqgREQEREBERAREQEREBERAREQEREBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQFC+K1OTYaGt0SyguME79DemkmJx/MBJs/QCpovCuoYLnRVFHVRNnpaiN0UsTxtr2OGnNP0EEhaW6ooriqeS9FWpVFWSuFz7U5Fk2P+EFxJOM4k/Kqma0WcFor4aVsDgKrkLzIRtp27fLsjl7jtXzWU82JVLLfc5CYHHlpLg/fJO3emse49Gyga2D8P4Tf6TWfMFooaa5VVwhoqeKvqmMjqKpkTWyzNZvka94G3BvM7QJ6cx13rKuibc8eXh9X0kTF6IqplSfCvg1fOH2UcPRUxx1dJZ8Zr6KurYZGhjauephm5GtJ5i3pJo61po3rYC1mQYFnlrsfEnCLNjkF0tuY19ZVU+QSV8UUVHHWNAmE0Tj2hdGS8t5A4OHL3aXRSLPE2VOGEKM/BVfaCPjFSU9G6ogvOPUdttMr5owauSKhlhIPpegeZzRt+h13vXVeeT4HfYGcPK59Dy0tgxG60Vyk7aP8AETSUtM1jdc23bMUg23YHL1PUbvdfE8EdTDJDNG2WGRpY+N7Q5rmkaIIPeCmKdlHv74uZeGVny/iTgvBW3VGMix41j8VtvEl5nr4pTWdjTahZFEwlzecuaXF/LoAjr65zgs9x4R3fMqfKKKltWLVt9rLvBk9Tc6eKm1UPa5sLmPcHteHEt7tHQ0eqt232+ltNBT0NDTQ0dFTRthgpqeMRxxMaNNa1o6NAAAAHQaXrJGyVvK9jXt9jhsIim1q4TjxVZn+RYXxowi/YRZc6x6out7opaWmjpbnDM8yFhIPIxxc4DWyAO4FRrhdghsFbT1lXwPs2PXe10T3i62+eiL6mpDeUNpw3TmiQF/WQs5dgHeyRerKOCJwcyCNjh3FrACF6onZ4zrTzc6YTwjzKx3a91tzpKeVnEWlqPOOOi7FjrJUua/sTG7YM0YY/s3aLjzjnGw5y/nBzhAcXqcbtd74OY/BXWcNZLmFPLSuEz4W/iqiNgHbdo5zWE8wboknZ1pdGImKIs0xhKleDttznhbaLXgdRh7bjaLdUyQxZLDc4WQvpXSue2R0J/G9oA7RaGkEjfN1UPqOHuf0fDyjwCnxMVVPQZOy4i9C4wNinpPKnjfMyMu5w8NdpzXADTTouOgemkQ2UYYYqRqcCyR2YcT7I+zOnxrOYyW36CriHiPNQCne2SFzg9x5mAgsBGndSNLAseJZ5lFTwzs1/xqHHrdhlRHWVV0ZcIp210sNM+CNtOxh52sd2hce0DdAa6lX6iYp2UZ++avuAeKXTCeFlss95pfErjDU1skkPaMfoSVk0jDtpI6te09/r69VPp52U0Ek0juWONpe5x9QA2Svpzgxpc4hrQNknuC87NZ/PuZjWt5seY4OnqD8Gs11EUf8AxM3rnf8ABI9AbJcWa26NecZ5Rzn35IrrpsUYz4Jdw1oZLfgllimY6OZ9OJnscNFjpCXlp+kF2v7lJURXrq165rnxfMzOM4iIiogREQEREBERAREQEREBERAREQEREBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQEREHjV0cFwppaaqgjqaeVpbJDMwPY8ewg9CFFJuFNjJPir7hbmkk9nSV0rYxv2MJLR+YAKYotKbldHCmVqaqqf4ZwQj8E9v+V739tPuT8E9v+V739tPuU3RX29zNptrnVKEfgnt/yve/tp9yfgnt/wAr3v7afcpuibe5mba51ShH4J7f8r3v7afcn4J7f8r3v7afcpuibe5mba51S5/8JCxS8MuB2YZRY71do7tbKPt6d01VzsDudo6tI69CVNMU4cUt3xez11ReLyaiqo4Z5C2sIHM5gcdDXtK0Pho/7rfEb+zf/cYrMwH8hMc/s2m+6am3uZm2udUtN+Ce3/K97+2n3J+Ce3/K97+2n3Kbom3uZm2udUoR+Ce3/K97+2n3J+Ce3/K97+2n3Kbom3uZm2udUoR+Ce3/ACve/tp9yfgnt/yve/tp9ym6Jt7mZtrnVKI0vC2wRPa+phqboWnYbcaqSeP9m48h+pS1rQxoa0BrQNADuC/qKlVyuv8AinFnVVNXGqcRERZqiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnbwI/wAhs9/Tm8feNXRK528CP8hs9/Tm8feNXRKAiIgIiICIiAiIgIiICIiAiIgpXw0f91viN/Zv/uMVmYD+QmOf2bTfdNVZ+Gj/ALrfEb+zf/cYrMwH8hMc/s2m+6ag3yIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAiIgIiIOZvDI4wYFWcAOI+OwZtjk+QCkfSm0x3andViZsrQ6Psg/n5wQQW62NFWvwf4lYjl+LWK32LKrJeq+G2RGWlt1xhqJWBjI2vLmscSOUyMB2Ohe3feF+d3+Uw4FDBOJ9LndrphHZso341yD0Y69o9P83aN0/wClwkKtP/JYcF57Zbb/AMT65j4vKEbrPbWnoJIQ9r55PpHaRxtB9Rjeg/QBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHO3gR/kNnv6c3j7xq6JXO3gR/kNnv6c3j7xq6JQEREBR7I82osemFI2OW43JzQ4UVIAXtad6c8khrGnR0XEb0dbI0vvNMifjdlM1OxktfUSNpqSOQ+i6V3rP0NAc8jv0w666UHoqMUcTgZJKieR3PNUTHckz9AF7j7egHTQAAAAAAGsRTRTr1RjlHvwd2jaPtuNXJnyZzlE55orXaqRp7mS1Ukzh+fTGj6t/396+PPLLvi9l+uZeaKNvlTHZ6m6Wcnp55Zd8Xsv1zJ55Zd8Xsv1zLXm80Dby20msg8qOpzVCj7QdqYQ4NMnL38vMQN+1ZibeemOxutnJ6eeWXfF7L9cyeeWXfF7L9cy81hm80Dby20msg8qOpzVCj7QdqYQ4NMnL38vMQN+1NvPTHY3Wzk2Hnll3xey/XMnnll3xey/XMvNaqxZVa8lqLvBbarxmW01jrfWt7N7eynDGPLPSA5vRkYdt2Ovf0KbeemOxutnJufPLLvi9l+uZPPLLvi9l+uZaduTW1+TyY8Kgm8R0ba91P2b+kDnlgdza5fhNI1vfTu0si73qgsFH43cqyChpedkXa1EgY3ne4MY3Z9bnOAA9ZICbeemOyN1s5Itxpw2t48YDWYjktNbG2+okjmbUUb3tngkY7YfG5zXAHW2nYPRzh61vcGF64d4fZ8ZstDZoLXaqVlLTtc6UuLWjXM49NuJ2SfWSStwibeemOyd0s5PTzyy74vZfrmTzyy74vZfrmXmibeemOxulnJ6eeWXfF7L9cyeeWXfF7L9cy80Tbz0x2N0s5PTzyy74vZfrmTzyy74vZfrmXmtVc8qtdmvdmtFZVdjcbw+WOhh7N7u2dHGZHjmAIbpgJ9IjfcNlNvPTHY3WzHOG588su+L2X65k88su+L2X65l5om3npjsbpZyennll3xey/XMvaHPcjpnA1Vnt9ZHsb8Uq3Rv16yGvZo/mLh+dYqJt86Y9/ZE6JZnwTXHMroMmik8WdJDUw67ejqG8k0O965m+w6OnDbTo6J0VuVU9ZDOySKuoHiG6Uu3QSb0HdxMT/AGxv0A4fmI05rSLHx69w5HZKO5QNLI6iMOMbiC6N3c5h162uBB+kKZiKqdenl+nv3nPk6RY2M8OUtiiIsnIIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnbwI/wAhs9/Tm8feNXRK528CP8hs9/Tm8feNXRKAiIgr7iS9zslxaJ3+q/zqYb/rAxjW/wB/K9//AFWEpDxHs89daaWvo4nz1dsnFS2GP4UsZaWSsHtPI4uA9bmNH0qNU9RFV08U8EjZoZWh7JGHbXNI2CD6wQtLvGiiY8Iw85n+73dCqibeGTmTI7lfL3inFzPH5heLNdcTudfTWqgpKwxUUTKRrTGyWD4MpmPUl++kjQNaUgs2Z3i5UfHSsqK6spX0lBTVNJA6oePEC+zxSkRbP4v0y53TXpbPerFv/A7B8oyOS+XSwRVVwlfHJPueVsNQ6PXI6aFrxHKW6Gi9ru4exfeVcFcMzW61dxvFm8ZqqyBtNVFlVNCypjaCGiVjHtbJy7Oi4Ej1EaC52+zrjj78VM4NjbMn404Hcrhdb06tk4e0dxkfFdqiPtpWzQAh4a8c7HE7cw7a4nbgSVrrvPeKLhtxSz2PMsgpb1j2SXTyfHJc5HUYZDU6jpnU5PI5jvgAEbHMA0joFfV24N4fe4rAyqtLt2GAU1ulgq54ZIYgGgRl7Hhz26Y3YcSDrqoZh3g1Y/S3i93jJ7dT3a5VWR1l5peSrndA1kkxkhMkJLY3SNB7y12vUSmKs26o4Q19NlV3lfx9knuFZTut1LBLRxOqHf5iXWmOQ9l19D0y52269LZ71GcGxtmT8acDuVwut6dWycPaO4yPiu1RH20rZoAQ8NeOdjiduYdtcTtwJKubKuCuGZtdau43izeNVVZA2mqiyqmhZUxtBDRKxj2tk5dnRcCR6iNBfV34NYhe4bAyqtJ5rDAKa3Sw1c8MkMQDQIy9j2ue3TG7a4kHXVFpt1TPH3xTVck3u13C22PjxmdryW9Wi5WHIairpKaiqzHSukjpKV5MsQGpQ8aaQ/YAA0Adk3x5L4o/OXEP/t6q/wD9y2buGGPVVhyO1VdvbLTZLI+e8MZNKxtVK+Nkb3D0y5gLY2jTSNa9uyYWrpm59FS5TBld44oZvacVyGut9xuuE0two4qqtkfTUtW+oljLomElsRLI2jbW9CS7vULzjxK+8GrnZqqqy2gvdlye0NuVBe7zJPPSvlngaOWdjvxkTmuMjDs6dpwDS1uuj7zwuxjIKquqLhbBUTVttZaJ3GeVvPSse6Rseg4Aac5x5hp3Xv6BYVDwTwq34rdscjsUclpuzg+vjqZ5Z5Klw1yufK95kJbyt5Tzbboa0pUm1VOP1xQjI7RV3HipjPDlmRX6147T2Gpuz56a6TNra+Zs8cbY31RcZSGCQuIDtnbd7AUAs19yPLchwnFpssvLKOmyq/WSa5UlUYp7jSU0Dnx9o9ug5w+AXgbBaXAh3VXlX8D8MulhtdoqrXPNS2t8klHKbhUipgMhJk5agSdrp2+o59Hp7Atja+FuLWQY2KCzxUbcdMzrWyF72tpzKwslOgdPLg52y/Z2Se/qoTNuqZ9/TgpriBll34KXfJcfpbncrgcjs0AxY3GtlqZWXEOZRvia+RznEky08x69/aH2q/sbtL7Dj1ststZUXGWjpo6d9ZVSOklnc1oBe9ziSXOI2ST3lQzKOHVxzTihjV4uhtox3G5H1tDExr31c1U6Ms28nTWMbvmAGyXNbvWlsLnbuIslwqXW/IMXp6EyOMEVTY6mWVjN9A57axocdd5DRv2BF6YmmZnw8FU8erldb7keQUmK1WRR3TG7K2trJ6O/G20FGXCV8TjGGPNRIQxxLXDk5WtGwSV9WasuvFXPsPpbjkN6ttDccBp7zU01nr30bZKl0rBz7YQW67Q/BI3oA7A0rJuHBmwZhUU10zC20V3v4gFPVVFH29LTVTGuJaySDtXCRo30bIX959uluMd4aY3idbb6u12801RQW0Weme6olk7OkDw8RAOcQQHAaJ6gADeuilTZ1TVjPJz5ZcovfEfCsEsEddkd1y51PcZpZLdfDaI309PWOpmz1M7GOc522sAa1p2XPLgsrAMnumXTeDvc75Umrujqq9089Q4gmR0VPURBxIABJEYJOhs7KuGq4C4LV262UL7I5kFtdUGmMNbURSME8hkmYZGyBzmPe4kscS36NBZEXBTCoLNbbTDYYoLfbbgbnQwRSyMFJUFxcXREOBY0lzvQaQ3qRrRRWLVePGcvLD0VA3KL8L2OEJvNx8utykSeUfGpPGjY+tbz9tvm3oeLb39H0LY0eCuvPHKGgsOWZg+047IK2/Sz5HVy08tQ8c0FC1hfy60e0kGiA3kb/SKsHG+HVx/C1es8v5tprnUQs1rit7Xkx0TZny80r363K8ubsNADeXQLt7WPQ+DhgNsvUl1pbdcoK6WsNwkey+1/LJOXcxe5nb8riSBvYIPceiJ2dU9/JTPD08V+KFjt+c2ut8Xr6uvdLufKJW0cUTKgsfSutwpTGNMaWb5+ffpc++isjg9a67I85z683PIr3VR2nKqqjoLabhK2kijFPFsGMHTx+M2Gu21paC0Akky+Lgbg9PljskhsbYLq6qFc50VTMyF1R39sYA/si/fXm5d767UmsGK2vGJLq+2UvizrpWvuNYe0e/tah7Wtc/0idbDGjQ0Ond3omi3MYa0tqtxwoe7yJdIv+yiulSI9d2i4Pd/jc/8Av2o/cK5lupHzua6QjTWRs+FI8nTWNHrc5xAA9ZIU5wmxS47jVJSVBDqxxfPUkHY7WRxe8A+sBziB9AC6aOFqqZ8Zj37zcunVRqxT4t6iIsniiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAkOsGz0noPPm8feNVtZnxdw7h/ilRk19yCkpLFBMKaWtjJnY2UnXJqMOPNv1aQS9FA7lxbp6TMsWsNFjmQ3mmyCn8ajvtuoe0t1LGQS0zy72wu0NDl/pBeVuu/EW91WcUdRYLZjUEDJIcbub67xvxp+nhk00TQORu+zdyb38IewoLBUCyHDpKKv7exVFLFJVOL3Wmqf2ccru97oSASxx73DTmk9dNJc46W7cJcrzvhpZrDlPEO626+wVZqa+84fq2vqmbk1AAebTAHsBOuvZgkdSpNU8IsTrOJtJxCntIly+ko/EILiZpB2cPp7AYHcmyJHDZbvWuvQK9Nc0/ZpRcqtzrUyqm2cX7Pd4L9LRQVNyFhk7K5m1mOtFM/ZHKeye4k+ifVvoe4ghSC25DU3ahhrKbHL8YJm8zDLQOjcR9LXEEf3hWtaMdtWP+M+S7ZR23xmV08/idOyLtZHElz3coHM4kkknr1K2KvrW/Gjzl279cyhUPlC4fNu9/ZR/EnlC4fNu9/ZR/EreRNa10eZv1zKFQ+ULh82739lH8SeULh82739lH8St5E1rXR5m/XMoVD5QuHzbvf2UfxJ5QuHzbvf2UfxK3kTWtdHmb9cyhUPlC4fNu9/ZR/EnlC4fNu9/ZR/EreRNa10eZv1zKFG5RnEWF2Ctvd8tN2ttpomdpUVc1LpkbdgbOj7SFn0d7qrhSQVVPj95lp52NkjkbSjTmkbBHpesFS3jTcfJPC3I6zzP8/8Asabm82ux7Xyh6Q/F8nZyb9vwHd3cpPYJe3sVtk8R8mc9NG7xLl5fF9tH4vWhrl7taHd3BNa10eZv1zKFYeULh82739lH8SeULh82739lH8St5E1rXR5m/XMoVD5QuHzbvf2UfxLQ1PEuho8wpMVmtd4iv9XC6op6J1C7mljaNuc0/BIGuvXp09oV+L+EA62O7uTWtdHmb9cyhUQuNe4AjHL0QeoIpR/EnlC4fNu9/ZR/EkvCC6cKeG96tfBualtl4qa/yjDDkdRPWUocS0yRAlxcxrw0929Fzj3nYkDuLNLZ+ImP4FeaG4MyC627xuOvpaCV1tkla1xlibN15XAMc7TvUW7OyAWta6PM365lCP8AlC4fNu9/ZR/EnlC4fNu9/ZR/ErbimjnZzxPbIzZHMw7GwdEf3EEL7TWtdHmb9cyhUPlC4fNu9/ZR/EveAXyucG0uNV4JIHPWOigjA9p24u+ppVromtb8KPOUTp1zKERxjCZKKqjuV4mjrLlGD2MUIIp6XYIJYD1c8gkc50dbDQ0OcHS5EVKqpqni4q66q51qp4iIiooIiICIiAiIgIiICIiAiIgIi/jnNbrZA2dDZ7yg/qKJS8V8RY7J44b/AEVdUYzTuqrvS0MgqJqNjQ8kPjZtwdqN3o65umtKK1XHKsvvC62ZlgWE3jMzcap1PDa3uZbpmsBkBmeZujWbjGj3kPadd+gtdFDa92fu4mWsUUePs4fClLq99Q6byoagiTlbEB+K5AeyJLjvq7Xd10tu4S3qstGbWrLM8umSUGQyvFMIYWUMtrgJdqOJ8feQC0c5A3y7110gnF8ymy4yKXyxd6C0+NSiGn8eqWQ9tISAGM5iOZxJHQdeq0cHFvFqribU8Pori9+WU1IK6ai8VmDWRHl5SZS3s9kO6AO30PTosWg4J4bTYzjdirbLBfqLHnc9ude2iskhfsnn5pN7d17/AFaGu5TkNa0kgAE95A70FU27ibnGacOMgu2P8PayxZLTVYp7ZasskFMKtnNHzTP5CSxoDpOm+vIOvpLYXLHuJOQSYDVsyu34saMRz5RbaKgFXFcHjsy6GGSQh0UZIlHN8LTm9+jux0Qcn+BNw/opo+JuRz11yqX1uT3i1yWyaqLqFsXbtcXNh1oPO9F2+o6LofDeF2J8P8bZj+P2CittmZKZxRxx8zO0OvT9Le3dB17+ip/wI/yGz39Obx941dEoP4BoaHcv6iICIiAiIgIiICIiAiLHNfTAkGpiBH/OEGQix/KFL8Zh/aBPKFL8Zh/aBBH+J9vyq64DeqTCLnS2fK5YOW311a0Ohhk5h6TgWPBGt/0Hd/ct5aI6yG00UdwlZPXsgY2oljGmvkDRzuHQdCdnuH5godxpseOZzwtyOw5BWV0dmrqbsqp1lidUVgZzA/io2RyOc7YHQMd6+ik1gkt1usVtpKWq3TQU0cURqDyycjWgDmBAIdoDYIHX1BBt0WP5QpfjMP7QJ5QpfjMP7QIMhF4x1lPK8NZPG9x7mteCSvZAREQVRUcF5eH2EZPRcIZ6PEr/AHatFyE9yElZTdttpkbyuceRrw0g8oOudxA3rW4HE2XH8sxLDr/arlPfbxQiR92tlukdaRUsYTLH2pJMZPI9zWu36OtnqNz9EHjS1tPXMe+mniqGskdE90Tw4Ne0lrmnXcQQQR6iF7Kr6/gvFiOLZczhU6hwbKL/AFLa6S4vp3VMJqA4FxMTncoDmhzfRGhzl3KT35x4iXXFr7hWL3+w3K7Xa80vLV32x0LnWunqmM29r3OdzRtdyyFu99APb0CwkWHbrxQXfxjxCtpq3xaZ9PP4vK2TspWnTo3aJ5XA9CD1CzEBERAREQEREBERAREQFqspyqz4RYKy93+5U1otFI0OnrauQMjjBcGjZPtcQB7SQPWtqqps+L4xceNmePmyDy7caygoGV+LVbRLBRMYCY5Ax2xt+t93eAg2d6432S1zYN4lbr1kdJmDmeT6+yUDqmnijd2epp3bHZR6la7ZHcHdPRKy7dlGaXDiFkNlnwxlrxmjpQ63ZPLco5mV05aw8hpm6kYBzOBJOj2Z0eoU0p6eKkgjggiZDDG0NZHG0Na0DuAA7gvRBU9Ng/ErLuF8tny7NKbHsrmrBKbthkTmNjgBB7JnbDez6Q5texby5cFcZv2XYplN4jq7rkONQdjQVs1XIwh2tGR7GFrHvO3b2NekeiniINPaMPsOP3O43G2WW32+4XKTta2rpaZkc1U//ikeBt5/OStwiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAufqvjhbp8xuFktOP5DkTaGuFvrrnaqJslHSVBI5o3vc9pcW8w5uRruXfXS6BXK+I27O+FN/yOxUmHMySy3K/1V1pb1BdIadsMVTN2j2Txv8ATL4y52iwODgB3INte/CNxyx3W6QyW291NmtNYLfc8ipqNrrdQz7aHMkeXh/olzQ4tY4N31IXzkXhGWPHLhk0ElhyGtpsanbFd7hR0bH09Ix0UcolLjIC5vLJ1DA5w5SS0DlJr+/cNc+psQzvhta8cgrLTk10q6mnyZ9fE2Gkp6uXtJRLCT2rpI+Z4HKCHeidjqt7WcK8hbiPHm2wW90suSRSR2YPnj3V/wCjIoG7JdphMjC30+Xu33dUG+m4yXZvH0YXT43X3CxOs9NWtr6RsBAdLMWmdznTA9g1o5ejefma/wBEjlJwLLx7pbXaMqvN7Zfp4KbK2WCK2yWyBtTSSPjgDImNhkd2zC6QODiec8+uXoF8x4xluI8UMbyOixx19oZ8XprBXMgrYYZKGWOYyGRwkcA9mnuHoEnbe7qtJceFGVTsyAMtfMaribQZDD/nEXpUEfifPN8LprspPRPpHl6A7Gwms3hDWOgseUV1ys18tNXjhpfH7VWQRCqDKh4ZDIzllMbmuO+of05XbG+ikt/4oWTGMrdYrm+WkfHZai/S1r2t8XipoJGMk5nb5ub8YDoNI0D13oGreKvCDJc0vvFF9vpYmRXixWqC3TTTMayeppqiaZ0ZAJc3vYOYgD0vXo61ubcOM042ZbdpbnjT8OtdbhddY4p6qvgqJGVclRBI3nbC53oHsz1BOw075SQCFtcOuOFsyPNbLaaiw5Dj0t2bK+1z3mhEMVcGRukcIyHuLXcgL+WQMdoHp0V6rlvwfeHrbRmdnnuPBaxYdcqCmkD7/RTUjy+fk5CYGxgvDXtdISX8pAOtHa6kQEREBERAREQVrcOCdvsVpzWXh0+mwLK8ncyeovVNSicdu1xIkMLiGknmfvWht5cQTvf357ZJhdXgmPXywXPKa66xCnuWR2SlaKKkqQ1u3SsLuZkbjznm7hoDRJ0LHRBrbTklpv09fDbbnR3CagnNNVx0s7ZHU8o745ACSxw9h0VslU/CubDouLfFa3Y7i0tivdNVUMl6uHJyQ3KWWF8jHsAcRsBzuY6G3OJOydq2EBERAREQEREBERAVZYtdbJUcec4oKXFJqC+U9BQvrMic0iO4Mc09nG0+sx9x/OrNULsnnt+FHJfKfiXmN4rTeR+y14x2+j2/P69b1raCaIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAsB1jonOJMGyTs+m73rPRBr/IND/Uf43e9PIND/AFH+N3vWwRBB+J82P4jgN6vF3vFVi9tpIO0nvFFH201K3mA52sdHKHHqBoxu7+5b2z2u2V1poqmBz6yGaBkjKiQlrpWloIeQANEg71od/cFz5x18Nvg3i1ky7Ha+emy2+250lHUYpX26pZFVTMk5XROkfTui0CCeY7adDW9gqweCnhOcNONMtPZsOvcVRdYKDxqW1RUk8XisbOyY4bfGxvK10rGjXf118E6CzfIND/Uf43e9PIND/Uf43e9bBEGHBaaSmlbLHFyvb3HmJ/8AVZiIgIiICIiAiIgIiIIZiVVm02e5tFkFHRQYpFJSDHZ6cgzTMMRNR2oDiRqTQGw3p7VM1W3D+1UNFxX4mVdPmj7/AFdXNQGpsDpeYWQtgIa0N5jy9qPT7m716+9WSgIiICIiAiIgIiICrLFrVZKfjznFfS5XNX3yooKFlZjrnEx29jWns5Gj1GTvP5lZqrLFrrZKjjznFBS4pNQXynoKF9ZkTmkR3Bjmns42n1mPuP50FmoiICIiAiIgIiICIiAiIg528CP8hs9/Tm8feNXRK528CP8AIbPf05vH3jV0SgIiICIiAiIgItNkmVUeMwxCZslTWT83i9FT6Ms2tcxAJADRsbc4gDYBOyAYZU5RldxJdHPb7PGdcsTIHVMg/O8uaPqb9a1i3jGNUxEfX/HFvbsXLvGmFmIqr8p5X842fu+P3p5Tyv5xs/d8fvU6lHzI/N6N9yurURVX5Tyv5xs/d8fvTynlfzjZ+74/empR8yPzehuV1aiKq/KeV/ONn7vj96eU8r+cbP3fH701KPmR+b0NyuuIv8qJwMFiyu1cTbZThtHeOWgunI3o2qY09nIf+/G3l/PF7XKz/wDJg8DDiuDXHiRc4DHcr+DR2/nGiyiY8Fzvb+Mkb6/VE0j4SuziBiFVxTxOtxnKbjDdrJW8nb0r6MR83K4PaQ5jmuaQ5oOwQVs7BSXvF7Hb7ParzDRWygp2UtLTR2+PliiY0Na0bPqAA6pqUfMj83obldXGiqvynlfzjZ+74/enlPK/nGz93x+9NSj5kfm9Dcrq1EVV+U8r+cbP3fH708p5X842fu+P3pqUfMj83obldWoiqvynlfzjZ+74/ev75Tyv5xsP/wC3x+9NSj5kfm9Dcrq00VbUmY5Na3c1XHRXynA9JtPGaWfv/o8z3Mcdeoln51OLFfqPIqEVVHIXNDjHJG8cr4njvY9veCNj+4gjYIKrVRhGtE4x9PeLnuWa7X8UNiiIs2IiIgq7hvdcXrOMPFWks+PVVryCkntwvN0m32dxc6nJhMfpH4DNtOg3qfWrRUMxKqzabPc2iyCjooMUikpBjs9OQZpmGImo7UBxI1JoDYb09qmaAiIgIiICIiAot5yVfsj/AFf5qUrhvF8TipMT425pabcK7OLdfsgdaKt7TLLSvDHACBp6NJ5nEgDbidHehoOu/OSr9kf6v814svtcyqllNRzxvADYHMbyM16xoc3X6Sfo0uROBnD2mmvODZNZs3xVtRNB43UxWmCobcLvG6LUrKl0lZJ2jg5zXOLmba9o+D3KMWrAbHbPAlqMmit8b79UUg8Yucm3zCAXJj3MDj8GNojB5RoDl33kkh3R5yVfsj/V/mvWkyCqmqoY3CPle8NOm+on865F47Xy3XbiJlcdDX01Y+HhRfXSCnla/kDpIS0nR6bAJC2+BYtbMF4tcEamx05oajIrTVtu8rZHOdXllPBKx8xcSXvD9kOOz6RG9IOx0REBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQFj3CvhtdBU1tS/s6emidNK8/0WtBJP1BZCi3FLn/B5f+Tf/wAI/m5e/l/pf4drW1TFdymmfGYTEYzEIZbXz3F8t3rh/pCuAe8dfxUfUxwjfcGBx/O4ud3uKzkVEcYLNjV/4+4DR5XFQ1FqfZLqexuLw2F7w+l0CCQHdNnR33b9Swrrm5VNUvqJwt0xFML3Rcb0Vto8otGLWWOpnrcNj4pT0dne2oe5r6BtHOTHHJvbou07ZgIPVuxvSnN2wrCJ+MtyxfLaW30GJWjHqeosNpnl8Womc80xq52N21vaNIjHMOrQQem9qjOLszyh0ei5C4R2Sn4o5Fw6pcvgkv1C7ELnJHHcnOcKmFlyjjppJWn4ZMJY4F2+pDu/RXjgOMW7H+H/AAhymhifDkU2YeS5rkZnvmlpDUVUHYOc4kmMRxsAb3DlGvWpwRF6Z44e+Hq7DWot2WWy65HeLFSzmS5WhkD6yLkcBGJg50fpEaOwwnpvXRcfV9uxa28IcuyKhkpafiXT5ZcGWipp6jVeak3JwihY0O5i1wPVmtFrnEj1q2sJxbE6PwoeIlZW261099ZHbKq3yysY2bmlhmbM+InqS49HEd/rTBMXZmYjD3x9F/Ii4wtdwo5s8wHPLPHYsakv+WvozRU9TNJdaiB5mZJ4050vIWlwB7Ps/QJjAcO4wvXc1MHZ6LjwYxbbbwoumb09OY8pt+eSCmufaOMsUbr2InRNO+kbmyP2weiS4kgkkrD4z3Cjrbxlmb22OxY3c8fyOlt0dZUVMzrvVTRywNeY/wAa1kURYT6HI8OaHuIG9qcGc3sIxmHV9jzehv8AleS4/TxVDK2wOp2VUkrWiN5mi7RnIQ4k6HfsDr3b71IFz1VYrS8QM/494lJVR09fcae1y0u36kje2kHZTtHfpkrWHY9YWgxW/WDjfHf834hW+Hzaxmxw2ispa+PcTK4FtRXkN9rXsp2DXUluh3ottJjh9/J1Ii4zbjNBg3ArOM1ximoMbvuQmmkko7YeaSz2gzxtLS2NweH9k5z5CCCHOOiOQEb6LhvT4zjeb3KzZXislC7ELgKmzYvTyxsqmvhcYqiQPq5htpa4B4AJ53Ak+pgrtpy83VyxPKPmtd6e9RkRwF7ILgOupICS0OP0xucHb/4ecf0lB+BOFWfEuHFgnttGyGsuFso5q2rcS6aqk7EHmkeeriOY69gOhoABSzMdeaN75t68Rn3y9/8Aq3dy2sT/APSmPCeE/aWlVMXLcxV4rlReFF2nicHbf67s28//AHtdf+q91E8Hy4iIoFbcP7VQ0XFfiZV0+aPv9XVzUBqbA6XmFkLYCGtDeY8vaj0+5u9evvVkqruG91xes4w8VaSz49VWvIKSe3C83SbfZ3FzqcmEx+kfgM206Dep9atFAREQEREBERAULt2Bx2cVIoKOiohUzvqZxTRiPtZnnb5HaA5nO9bj1KmiIK5tHB6yY/dqm6WvHrLbbnU7M9bR0ccU0u+p5ntaC7f0lafHYbRJkl74eW+xeIQWekikliFC2K3SRzgnki0OV3r5m6Hf69q3lC7J57fhRyXyn4l5jeK03kfsteMdvo9vz+vW9a2g0tv4GYzaYJYaHFMeo4ZqeWkkjp7fFG18EujLEQGdWP5W8zT0OhsHS3dLw/pIblaKt1uoO1te20cohbz0rCA1zYjy+gC1oBDdbAAUzRAREQEREBERAREQEREHO3gR/kNnv6c3j7xq6JXO3gR/kNnv6c3j7xq6JQEREBERAWPcKGG6UFTR1LBJT1EToZGH+k1wII+orIWLWXSit0lOyrrIKV9RIIoWzStYZXnua0E9T9AUxMxOMCrbcye2vks9c7/SFCA1x6/jYtkRzDfeHBvX2ODm97SojmXCG053ndjv16ho7nQW2hqqN1pr6JlRFMZnRODyXEgcvZd3Kd83eNdZ3e83w/PMkyHFrbV1FbmeMUzqmWCigfHPTlzQRG2R7OzcX+h6G3A+iSOgIjPD1/ELJcUgul3xCOzVcj3N8n11YIqlrAdNc5rQ9o5ho65gR1GugJ1qoi7OtRMRM+HLt4Ye/q9u1pVuunVuc21bjFmbTW2nbaaEQW2QS0MQpmctK8NLQ6Ia0whrnDbddHEeteORYbYMwZAy/WO23tlO7nhbcaSOoEbva0PB0eg6hbLyZlnzcj/eEfuTyZlnzcj/AHhH7lXd684/FT6unb2eWtDwbZLcy4w3BtBStr4YDSxVQhaJY4SQTG12thhLWnlHTbR7FjxYlY4aGjoo7Lb46OiqPG6WnbSxiOCbmc7tWN1pr+ZzjzDR24n1lZ/kzLPm5H+8I/cnkzLPm5H+8I/cm715x+Kn1N4s9UIDw94I4/g8lRWzUFtut8kuVZXx3eS3RsqYhPO+Xsw88ztN5+XexvW9DuUmyHCbRkVQyvmoKNl8p4nR0V4NHDLVURO9PidIx2iCdgEEb7wVuPJmWfNyP94R+5PJmWfNyP8AeEfuTd684/FT6oi9YiMImEMpsAySCpikk4mZDURseHOhkorYGvAPVpLaQHR7uhB+lbgcOsUFbVVgxizeOVcrZ6io8nxdpNI1wc173cu3ODgHAnqCAVu/JmWfNyP94R+5PJmWfNyP94R+5N3rzj8VPqbaz1MB2JWN1sltrrLbzbpZ/GpKQ0sfZPm7Tte0LNaL+0Afza3zde/qsWv4fYtdblU3Gtxq0VlwqojTz1dRQRPlmjI0WPeW7c3XTROtLc+TMs+bkf7wj9yeTMs+bkf7wj9ybvXnH4qfVO3s5w1N3xeGdlRWWmOhtWQmjdRUt3dQsmkp2EghuvRLmAgHk5gCQFpcW4SWKxYNJjNypoMlpaqolrbg+6UsUja2pklMr5Xx8vJ8M7A16Ia0DuUw8mZZ83I/3hH7k8mZZ83I/wB4R+5N3rzj8VPqjbWMcdaGgx7hlh+IzzzWLE7HZZqiIwTSW+3QwOkjJBLHFjRtuwOh6dF62nh5ithpK6ltmM2e3Utex0dXBSUEUTKhpBBbI1rQHggkEHfeVgzZffqCoyLyph9bZrfYqc1dVdbhURx0boQHFz45eofoMJIHUDWwNhbbGrldcxstLeLFb6C72qqaXQVtHdopYpACQdOaCOhBB9hBHeE3evOPxU+pt7EeMNpS0sNDTQ01NDHT08LBHHDE0NYxoGg1oHQAAaAC8RbvOm709mjAkga9k9wPXUcIJc1p+mRzQ3X/AA859XXPpMNya5u5ayaisdOR1dSvNVP3/wBHmY1jT9JDx9CnNjsVHj1CKWijLGFxe97zzPlee973HqSdDr7AANAAK1NMWZ1pnGfDDw+uPL3xct/S6dXVt82wREWLxhERBDMSqs2mz3Nosgo6KDFIpKQY7PTkGaZhiJqO1AcSNSaA2G9Papmq24f2qhouK/Eyrp80ff6urmoDU2B0vMLIWwENaG8x5e1Hp9zd69ferJQEREBERAREQEREBVli1qslPx5zivpcrmr75UUFCysx1ziY7exrT2cjR6jJ3n8ys1Vli11slRx5zigpcUmoL5T0FC+syJzSI7gxzT2cbT6zH3H86CzUREBERAREQEREBERAREQc7eBH+Q2e/pzePvGrolc2+BRc6SHEc+pX1MQq/PS9VHi/ODIYxKwF4Z3kAkDeu8hTyHwhbPl3DW45fw3t1bxIjpK3ye2jtbDA+Sb0ObrMG6a0SNJdojXUbCC1l8yPbExz3uDGNBLnOOgB7SoDXy8SLnlWIVVsisVpxV9OJr9RXHtJLiyUt/1UL2bjIaT1J9behIK+bbwhDqvOfOLJrxldpypr4JLJcpQKOipnB4MMDWgObtshaXc2yA31gFBlZ1xswrhvYbdeb9foae2XKrFDR1FOx9S2eckgRt7Jruu2u+gcp33L2fm97/ChHjEWG3F9jFGaibKHTRtpWPPwYms3zPJ0Qe7XTpo7Wzw/A8fwHHLdYMftVPbLRbi51JSxglsJcXFxaXbOyXv2d79I+1b9BVdsxLiTmGDZLZ82yOgsFyr6r/R9ywkyRTUlKHNIHNMDqQhpBI3rnOj0C20nBDE7icJqL5Ry5Nd8Piay1Xe7zGSqa9oj/GyObytfITExxc5veCRrZ3PkQfwNDSSAASdnXrX9REBERAREQEREBERAREQEREHjV0kFfSy01TDHUU8rSySGVgcx7T0IIPQg+wqBZXwWt16teOW+xXa54JR2Gu8dpqbF5GUcMm3EvikjDdGN3M/bRrq4lWGiCDU91zui4kXxlztlofw9joRUUFfRTSvuImaGc8ckPLp2z2hbyeprR1J0PThtxdx/ijiVNkFsdV0FLNUuojT3endSTsqAdGItf3u309EkE7AJIKmqinEvhZi/GDGTYMutTbvajK2cQulfEWyNBDXtcxzXAgOPcfWglaKEy4plkXE+gvNHlscGFx0PitRixt7DzSt5uSZk++Zp9IAt1rTAtLZ+Nj7Vht9yLiTj83DOjtNeKJ0lyqo6iOZrnMbHKx8W9tcZGju0DvqQ0kBaCLGttypLzbqW4UFTDW0NXEyenqad4fHLG4BzXtcOhaQQQR0IKyUFXcN7ri9Zxh4q0lnx6qteQUk9uF5uk2+zuLnU5MJj9I/AZtp0G9T61aKhmJVWbTZ7m0WQUdFBikUlIMdnpyDNMwxE1HagOJGpNAbDentUzQEREBERAREQEREBQuyee34Ucl8p+JeY3itN5H7LXjHb6Pb8/r1vWtqaKrcZpMepPCBzSeDMH1uR1luo/GMYkk6UUTG6bKxv/PzDZHtHtQWkv45wa0k9ABsr+rzqHBtPKSQAGkkn1dEGH5eof6//AAO9yeXqH+v/AMDvcuf8D4vX7iLPSXW14WY8Gq5JGwX6qukccz4m8w7fxbk2I3FvTb+bRB5QFprN4RlVc47HfJ8Qmo8CvlxZbaC/Or2Omc6SQxwyyU3KCyKR4ADuckczSWgFB0z5eof6/wDwO9yeXqH+v/wO9y5ip/CNubqM3qows0+KQ5A/H6q5+VGuljkFWaVszYez9KMu5N7c1wLiA1wAccjB88zu78bOJFlqbVQ1NgtVRTxU7jcuV9M11L2kfKwQen2ri1zuZ3ocxA5w0bDpXy9Q/wBf/gd7k8vUP9f/AIHe5cmYTxtutDj2PU8GOVt3vmRZFd7cKSuvomFLNA+Z7gJ3Qt/Ejs3AAN21gGg8gAyWi8ICV9LRxV2N+JXkZbFidfRCuEjKeSRnaCZkgjHaMLHMIBawnZB1pB0d5eof6/8AwO9yxqnL7TSV9roparlqbnUOpaVnI705BFJMRvWh6EUh6+zXeQqDzPwg7Zgd1zemutCY6fG6a2ysnFS1prJax0rI49PDWxgOjG3udrTiToNO8/gF4QtJxIz+rxmemtUF0ZbX3GJ9jvsF2p3RNkYx7XPjDTG8GRnoluiCSCdFBOqLPM0zSyZrFYsPmxe82yZ9JZ6nLBqluEjXOaZOSJxeIttBDv6Qc0jfULzr+HWZZjYsKN8ziqx+92mZtVdhiv4qmuTw5pEZ7Qcwj9HqCOoc4EdVaCIOVfAf4f49EeIWZNtcIyeXLLvbn3Lbu0NOJ2uEffoDm69B10PYupaalhooGQU8TIIWDTI4mhrWj2ADuXPXgQubJgedvaQ5js4vDmuB2CO0b1C6KQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFjXG3Ul3opqOupYa2jmbyS09RGJI5G+xzTsEfnWSiCDXrhJb7tm2LZJT3a82Z+PROp4bZaqzsKGohI12U0IGnNB5SANfAb6gtXT5PnuF0ufXjMrZQ3ix257qqw0+KQzT3Cpp9vPZSRu0DKAIwC3QOzvWtqzUQUjwVy7F8gznLsgoM7mr6nJzQzRYpdXdhUWjkpyOzbA95cDIPxhAaPUeo0Vdyoe18P+F/E3jZm8tZgBOUY1cbbVzXyta7kqajsQ+F8JD+5jWMDm6AJA2CpxBi+Y49luX5FHlE+R2utpOe2YnPTRQspqljAAGVG98r+UDR0AXFx2gsBFVLOPdFhvD6w5BxVoW8Na+51pt3k6pqPHAyf09fjImkcrhGXBx0AC3Z6hWsgIiICIiAiIgKOX/DKWtq6292ult1vzJ1vloKO/TUTZpYGu6tDuoL2B4a7k5gDr1bUjRBWuO8RjhcOGYpxLyKzR8Qr1HKyJtAySOnrXxuA/Flw0HEOZ6J5eZxcGjppWJVxtmpJo3jmY5jmke0EL4q7ZR181JNU0kFRNSSdtTySxhzoX8pbzMJHou5XOGx104j1qqX5jWcAMXuFx4pZeb/a6u+djQXGC0uY6kgmO42VHZbaGtdzN59Aa5R1JAAV/wAMMB4g8OaC2YeanG7phFuc6CKtmM7bi+k9IsidGG9nzt2G8/NogfB2o9aOBOZx2LGMFuF0sr8Cx65QVkVXD2puNXDBL2sEEkZaI2aIYHPa47DegG11u2hpHNBFNCQRsHswv75Ppfi0P7MIOWajgdfZuDt4xMVduFxrMndeo5TJJ2IhN1bV8pPJvn7NpGta5um9dVJLZg+U41xkyLILbJaKrG8kNJLXMqpJY6umkgh7H8UGtLHhwDD6Rbo7710F5Ppfi0P7MJ5Ppfi0P7MIOWcW4HX2x3fDKqertz47Lk16vNQI5JCXw1jakRNZtg28dszmB0Bo6J6b+L5wNyGrqMmuNDW2xlylzCkym1R1DpDE4QwRRGKchu2c3JJ1aHa209eoVx8E7ZZbDZrniMGWz5xdLBWSRV9Vc3margdK4yMike7ZdytdoEk9AB6tKxvJ9L8Wh/ZhByJeOAOX5zcM6ut+uVmtd0vAs9RaTbO1qGUVTQySyNEnaNb2jSXtGwBsOd6I0N3PwYpM0iu1dJl1JjFGPF2sp2Y+Znku36bnvka3QPo6aAdaO3FWp5Ppfi0P7ML7ipYYHc0cMcbta21oBQeqoLwieIV7vt7t3B3AKowZnkURluNzi6ix2zepalxHdI7ZYwbB2d7B5SZzx04xUXBXBpLvJTPul4qpW0Nns8PWa4VsnSKFgHXqepI7gD3nQOm8Hbg7W8OLJcb7lNS268RcnlFff7j0IEmvQpo/ZFEDytA6d5GhoAJxw44e2XhVhNpxXHqUUtqtsIiiaernnvc959bnOJcT6ySpKiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIghtK/Nm8W65k7KB3D42iN9NK3pVNr+1IewjfVnZgHfTqQOvXUyVXcTrZY7ZxO4bZbesrqLA6krJ7PR20EmC61NZHyRRPHcHN5XFvTv9fRWigg3FC45HSyYrSWLGKXJKOvvUFPeHVhaWUVCQ4yThpILnAhuuhHfsKcqvrvbKi8casfqqTOWUkNmt1Q+uxCCQc9WJtNjqJWh++VpaeUlnfvTupCsFAREQEREBERAREQF8SxMmYWSMbIw97XDYK+0QVpdqO8cMrzm+d1mQX7J8ekomTw4lS0TJ5KaWNunGm5dOPMA30Og2XOJO+kssedWa+4PSZcyq8SsFRQi4+NXFppRFByc5fJ2muQBuySemhveuq36/LD/KTcc5Mm4ovwuzT5DbKK003id3gqZpaejuEnO2VhbTEDmawhpErtiT0S0crGveH6YYJndh4mYpb8lxm4Mutkr2ufT1bGOYHhri13ovAcCHNIIIB2FnZBkdpxK0VF2vl0orNa6fl7auuFQyCCLmcGt5nvIaNucANnqSB61+fX+Sx41mKpvvDC4z+hLzXW1c7u5wAbPEN+0BrwB/wyH1r9CL5ZaHJLLcLRc6dlZba+nkpaqnk3yyxPaWvYdeotJH96Dk/L/Do4K8IuKuSRW+jgvT6+hgrbjkGMdnUur6trmRx03N6LJCyFxfz9ryt05vw9tXRPBvixaON/Dq1ZnYqaupLXcTKIobjE2OZvZyvidzBrnN72EjTj013HYH5KeF/wCCrcvBuzbdK2auwy5vc62XFzd9mepNPKe4SNHr/pDqP6Qb+rfg64Z+D7gVglgdF2M9JaKc1EetanewSS/43vQWKsC+3ygxmy113utXFQW2hhfUVNTM7TIo2glzifYAFnrmHOp5fCu4rTcPrfI/8F2J1TJMqrYnaZda5hDo7cxw72MIDpNesa9EhpIZfBKx3Dj1xBHG3KaSWls0DH02D2WqGjTUruj697f62bXT2N13jlK6TXnBBFSwRwwxshhjaGMjjaGta0DQAA7gB6l6ICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOZfCb8K3g5gdDNbr1Nbc2yqx1UNwo8ehc+Qx1ccpYC6djHxwyx/jHFryHDXd6Tdw4f5VThORvzezPQ7z4jSdP/wCUo5/lGvBR867ZU8VsXpi69UMLfLlKwbNTTsbyioH/ADRtADvaxoPTk9LnXgl4P/nr4GnGDMHU4kr6aogkt7ns6xtox2tQ4evTo5nD87PoKDrvh14aXg7ZBxGuOT+PVeLZVd4qW2SVd7gmayeLoWAuaXxQtY5xa9ziwbBJLmgOXXq/JnwBvBNPGbKxmOUUBfhFnl/Fwzt9C5VI6iPXrjZ0L/Uejeu3a/WZAREQEREBEXxLKyCJ8kjgyNjS5zj3ADvKDTZPlcGORxRtidW3CffYUcTgHOA73uJ+CwbG3fSAAXENMHqa/I7s4vq74+ga7uprXExjG9fW97XPcddN7aD1Oh01i2erlvTZL3VBwqrlqYNeNOih6mGL/wDS09f+Zzz05ivK/wCWWPFI4ZL3ebfZ2TFwidX1TIBIWtLnBpeRvTQSddwBK2qr2MzRRzjnPPt79Hu2dFoop1q4xl7GgrySfOK9fa/5J5Pr/nHevtf8liRZtjtRZqe8RX+2SWmokbDDXsrIzBJI53K1jZOblLi4gAA7J6LEl4nYdBZm3eTLLHHaXTGnbXvuUIgMo72CTm5eYeze1TeLubp2drKG28n1/wA4719r/ktZf8HpcrojR3usrLxSHvp7g5k8f6r2kLJuWaY9ZqKnrLhfbZQ0dREZ4aiprI445IwAS9riQC0BzSSOnUe1YtHxJxG41dBS0mU2Wqqrg3no4IbjC99S3ZG42h23jYI2N9xTeLuZs7WUIhYfBpwLFcppMjstpFnvVJzdhV0AZAY+ZpY7QY0Dq1xHd61Yfk+v+cd6+1/yWrqOJOI0l38lT5TZYboZ/FvEpLjC2ftdA9nyF3Nzac08ut9R7VqKvjTilBxQ8w6q7UlLezSRVDRPVRMD5JH8sdO0F3MZSNO5Nb5XNI3tTvF3MmizHhDZ5Vw+oc6tJteRVdbfbaZGSmjuD2zRF7DtpLXNIOiP/EdxW3FurgNDIr1r/wCr/ktgtHHneNTXWttceQ2p9zomOkqqJtbEZqdrRtzpGc22gDvJA0o3i7mnZWo/2wy32yukY5pyO96cNHVZo/XpaXDuHNBw+scdnxutuNmtkb3SCmpajlaXuO3OPTZJPeT1W5bktnfBa5m3WhdDdeUW+QVDOWs5mF7exO/xm2AuHLvYBPcsBvEXFHX3yI3JrQ689r2Bt7a6I1Ak0TyGPm5gdNPTXqTeLuZs7WUNl5Pr/nHevtf8k8n1/wA4719r/kta3iLijr75Ebk1odee17A29tdEagSaJ5DHzcwOmnpr1L3Ob463IfIBv9rF91vyWayPxnu3/qubm7uvcp3i7mjZ2soZfk+v+cd6+1/yTyfX/OO9fa/5LXniBi7bhcKA5JaBXW6N81ZSmvi7WmY0bc+RvNtjQOpLtALUcMOMWMcWMVF9stypjExnaVNK+pidPRt27l7drXHsyQwnqe4H2JvF3M2dnHDCEnFBXjqMjvW//qt/+iyqS65LZnc9Pd/LEQ76S6sY3f0NljaC387mv/N7NLbeIOLXm111zt+S2iuttA1z6uspq+KSGnaAS4yPDiGAAEkkjuKzrNktoyLxnyVdaK5+LP7KfxOoZN2T9b5XcpPKdEHR9qbxc8eP3iETZs1RhhCyMbyalyWle+IOgqoSG1FJKR2kLvUDrvB7wR0I7lt1UtRXux65UV6jJa2CRsNWGj/WU73Brt/9wkSD/ukesq2kqiMIrp5T+rxNIs7GvCOQiIs3KIiICIiAiIgIiICIiAiIgIiICIiAiIgjvEWuqLZgORVlJM6nqoLfPJFKw6cxwjJBH0gqDeSq75x3v7Z/JTLin/s0yr+zKj7ty0Cx0q9csWaJtzhjNX6Uvn/2vfu2Yt7OqYxx5f0azyVXfOO9/bP5J5KrvnHe/tn8ls0Xl79pPXL53ftJ+ZPdq32iskY5rsivTmuGi01ewR9S01l4aWvHMefYLVNU22xva9j7bSGOOncH75wY2sDTzbO9jrs7WymzfHKfIWWGW/2uK+vALLY+tjFS7Y2NRF3Men0LyquIWK0Nyjt1Rktnp7hJOaVlJLXxNldMNbjDC7ZeOZvo636Q9qnfdK65W3vS+uXjjOB02GWGjsliuVztNpo2dnT0dJUBkcbdknQDfWSST6yST1K2fkqu+cd7+2fyWvzPiBYcEojLd7vbrfUPje+lpq2sjgfUuaN8jA47cT0HQHvX1w9yzz8wPHck8V8R8r2+Cv8AFe07Tsu0jD+Tm0ObW9b0N+wKd90rDHXlO96Xq62vOH3Z3kqu+cd7+2fyTyVXfOO9/bP5LZoq79pPXKm/aT8ye7ZcLaqrnpL9BV1tRX+K3MwxSVT+d4Z2ELtb/O931qbKC8K+7Kf7YP8A5anU6XvVzjMTPjEfpD7uxVNVmiqecxH6C1GX001Zid6p6cE1EtFPHHrv5jG4D/qtuirTVq1RVk35KkscsdRZbfLFoxPp43M5TsaLRpU74QV4suP8QOEVxyGWCC0U92rXzS1LOeNn+YzcriNHudynfq7+mtq55bU7Ebm60vaW0Mj3Pt0vLphYSXGDf/FH10PWwAjZD9afIMIockyTGb3Uy1DKrH6iappWROaGPdJA+FweC0kjleSNEddd/cou06tc4cp5fZ9NFW1txNP0crZBSWvLbXmlytNGDgN9zbH46JnYGKnq3iSGOrljYQNse4gFwGnFpPVWbxCmxvBuPFnvOYQ0tFiPm5LR26oqqcOo6et8YDpW9AWse+LkAJA5gxwB9SvxFiiLWHi5J4cWNsuR8IG1dsMNlnvuS1tmoa2DRgonNe+m/FuHo6BDmjXQELwuVgtlt4OcSa2kt1LTVdJxJbJTzwwta+JwutK0FpA2NNc4DXqJC69RTijYxhhj7wwcf5DlGFUds4949eooK7Jrte6qG225lIZqqqkdRQNgEWmkkiXZGj6J69N9Zvb6+l4e8bsYmzWeKkq6/CqK3MrqpnM2ouMdQe0YH6IMnptPfvRV04phFDh1ZkVTRS1Esl8uTrpUidzSGSuijjIZpo03UTeh2dk9fZvpYxNE+MlwDgWkscWkb9hHUH6QoItTzmX0uUsdqrXac/vmG4dNRZZSXdl6km5reY7jY6hzXOc2SctHPDJIeRvMAerdOcArv/AtZflnL/8A7suf/wDep6xoYxrQSQBrZOz9aNKqZrwx4OUMczqy361eDnj9DWmW8Wqop6e4UzY3B9FLFbJo3xy7GmP5gdNd1IaSAQNqP8DquzXnJ+HmONuGO2264lX17n3JlcwXC8Oc2WPTYS0SNL+fneJOvodx9XaCrSl4EW8X+33K5ZPk+QQ26s8forddrg2WngnG+V40wPdy8x0HPcB7FLGbVUTE8/cejnvgZWWW75Tw7x0V+O2+6YlX1z5Li2uaLheC5ssfKIS0SNL+fneJDv0O4+rz4bYrYb1baHE8xza62jOhenS1dkZaqQVJrBUmRlQyfxUzFjtNd2vaa5TrmA6Loil4EW8X+33K5ZPk+QQ26s8forddrg2WngnG+V40wPdy8x0HPcB7FZaYopszh+975ejmjhhdLHjfGl+LYzUUGV2q5VV0qKwyW4suFil5i+RskxaO0hkftjeYA9W6c5oUNoayK6eCXHitpdL5fsU9OMltVHTB1bFTR1pMwMTmkPPKC7lcCHNBBBB0eyUUYtNjwwxz83JFxs+HXjA+J+S43nNXldbTYZXUMzW2+mpadsUkbntDjBTRBz2mM6BJLQ49BzLpPhvZqGw4Hj9Jb6SGjp2UEAEcLA0f6tvU67z9KkiIvRb1ZxaPOWmTDL3E0c0ktHLFG3etvc0taP7yQrpAIA2dn2qsLNa3ZVfaeNrSbXbp2z1Mhb6EsrDuOJp9Za8Ne7Xdyges6tBddX7tumiefGe+Ho8jTa4qrimPAREWLzhERAREQEREBERAREQEREBERAREQEREEW4p/wCzTKv7MqPu3LQLf8U/9mmVf2ZUfduUYuNCy52+po5XzRR1ETonPp5nQyNDgQSx7CHMd16OaQQeoIK49P8A9G396v0pfM/tvla/r/ZkIoAOCtlBBF6y/Y//ADbcz/76+ouDFmhlZILzlzixwcA/K7k4HXtBn0R9BXi4U5vmsLec9v8ALmbEsVsN7p63D83ze7WLNKq/zGptEVppDUTTuqy+GohnNK6YsIMbhL2mmjY2GhSPLbHb6rhb4TNdLQ08lcy81JbUuiHat7OjpXx6drY5XEuHsJJ9a6zRbbbjjg650yZq1sPeMTl9Pq5Xvt7xiw8RuJbuIUcHlC8WikbYJ7jSmZlRSik1JDAeVwDhOZC5g6kuB0fVc/g9f7B+Hf6P0P3DFYKh9+4XWvIbtPcKi6ZJTzTcvNHQZFXUsLdNDfRiimaxvd10Bs7J6kqs1xVGEs6r1NynVnhy+vKMOXBMEUBdwXszg0G9Zdpo0NZZch699fx/Xv8AWpPjOM02KW51FS1NxqonSGTnudwnrZdkAa7SZ7nAdO7eh19pWc4eDmmKMOE+X+Ul4V92U/2wf/LU6nSgvCvuyn+2D/5anU6X1NX+3/rT/wCYfoujf6Fv/rH6CIio6GHdbTR3yhko6+nZVUz9EskHcQdhwPeHAgEEdQQCNEKF1PDm60biLVfWSQf0YbpTmZzfoEjXNJHq9IOPtPtsBFpTcqpjDw+vFrRdrt/wzgrU4ZluzqpsuvVtsyeZmXfGbJ+rMrKRX2sdMdm293s1a+ZmXfGbJ+rMnmZl3xmyfqzKykTax0x2N7vZq18zMu+M2T9WZPMzLvjNk/VmVlIm1jpjsb3ezVr5mZd8Zsn6syeZmXfGbJ+rMrKRNrHTHY3u9mrXzMy74zZP1Zk8zMu+M2T9WZWUibWOmOxvd7NWvmZl3xmyfqzJ5mZd8Zsn6syspE2sdMdje72atfMzLvjNk/VmTzMy74zZP1ZlZSJtY6Y7G93s1ajDMt31qrKB7QyY/wDqsuk4a19Y7/TV8MlOe+ltcJpg4ex0he5/6hYf/Wfom1mP4YiP6InSbtUYTUx6CgprXRxUlJBHTU0TeWOKJoa1o+gLIRFjMzM4y5RERQCIiAiIgIiICIiAiIgIiICIiAiIgIiINPmFkkyTFLxaYpWwy11JLTtkeNtaXNLQTr1dVD/M/L/jNk/VmVkIrTNNVMU10xMRn9cPRz3tHtX8NrTjgrfzPy/4zZP1Zk8z8v8AjNk/VmVkIqalr5cdnP8AD9F+XHmrfzPy/wCM2T9WZPM/L/jNk/VmVkImpa+XHY+H6L8uPNW/mfl/xmyfqzJ5n5f8Zsn6syshE1LXy47Hw/Rflx5q38z8v+M2T9WZPM/L/jNk/VmVkImpa+XHY+H6L8uPNF8CxmuxqkuflGenmqa2tNUfFQ4MaOyjYB6XX/s9/wB6lCIr1Va04u6mmKYimOUP/9k=",
571
+ "text/plain": [
572
+ "<IPython.core.display.Image object>"
573
+ ]
574
+ },
575
+ "metadata": {},
576
+ "output_type": "display_data"
577
+ }
578
+ ],
579
  "source": [
580
  "from IPython.display import Image, display\n",
581
  "\n",
 
588
  },
589
  {
590
  "cell_type": "code",
591
+ "execution_count": 5,
592
  "metadata": {},
593
+ "outputs": [
594
+ {
595
+ "name": "stdout",
596
+ "output_type": "stream",
597
+ "text": [
598
+ "User Message:\n",
599
+ " \n",
600
+ "今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。\n",
601
+ "\n",
602
+ "Expected Output:\n",
603
+ " \n",
604
+ "{\n",
605
+ " \"文本分析结果\": {\n",
606
+ " \"情感分析\": {\n",
607
+ " \"整体情感\": \"积极\",\n",
608
+ " \"情感得分\": 0.82,\n",
609
+ " \"情感细分\": {\n",
610
+ " \"乐观\": 0.75,\n",
611
+ " \"兴奋\": 0.60,\n",
612
+ " \"期待\": 0.85\n",
613
+ " }\n",
614
+ " },\n",
615
+ " \"实体识别\": [\n",
616
+ " {\"实体\": \"北京\", \"类型\": \"地点\", \"起始位置\": 7, \"结束位置\": 9},\n",
617
+ " {\"实体\": \"国家会议中心\", \"类型\": \"地点\", \"起始位置\": 9, \"结束位置\": 15},\n",
618
+ " {\"实体\": \"阿里巴巴集团\", \"类型\": \"组织\", \"起始位置\": 16, \"结束位置\": 22},\n",
619
+ " {\"实体\": \"马云\", \"类型\": \"人物\", \"起始位置\": 26, \"结束位置\": 28},\n",
620
+ " {\"实体\": \"100亿元\", \"类型\": \"金额\", \"起始位置\": 32, \"结束位置\": 37},\n",
621
+ " {\"实体\": \"人民币\", \"类型\": \"货币\", \"起始位置\": 37, \"结束位置\": 40},\n",
622
+ " {\"实体\": \"中国\", \"类型\": \"地点\", \"起始位置\": 71, \"结束位置\": 73}\n",
623
+ " ],\n",
624
+ " \"关键词提取\": [\n",
625
+ " {\"关键词\": \"农村电商\", \"权重\": 0.95},\n",
626
+ " {\"关键词\": \"马云\", \"权重\": 0.85},\n",
627
+ " {\"关键词\": \"投资\", \"权重\": 0.80},\n",
628
+ " {\"关键词\": \"阿里巴巴\", \"权重\": 0.75},\n",
629
+ " {\"关键词\": \"经济机遇\", \"权重\": 0.70}\n",
630
+ " ]\n",
631
+ " }\n",
632
+ "}\n",
633
+ "\n"
634
+ ]
635
+ },
636
+ {
637
+ "name": "stderr",
638
+ "output_type": "stream",
639
+ "text": [
640
+ "/home/yale/work/meta-prompt/.venv/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:139: LangChainDeprecationWarning: The method `BaseChatModel.__call__` was deprecated in langchain-core 0.1.7 and will be removed in 0.3.0. Use invoke instead.\n",
641
+ " warn_deprecated(\n"
642
+ ]
643
+ },
644
+ {
645
+ "name": "stdout",
646
+ "output_type": "stream",
647
+ "text": [
648
+ "```\n",
649
+ "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
650
+ "\n",
651
+ "* **文���分析结果:**\n",
652
+ " * **情感分析:**\n",
653
+ " * **整体情感:** (e.g., 积极, 消极, 中性)\n",
654
+ " * **情感得分:** (a number between 0 and 1)\n",
655
+ " * **情感细分:** (a dictionary of emotions and their scores)\n",
656
+ " * **实体识别:** A list of dictionaries, each containing:\n",
657
+ " * **实体:** (e.g., 人名, 地名, 组织名)\n",
658
+ " * **类型:** (e.g., 人物, 地点, 组织)\n",
659
+ " * **起始位置:** (the starting index of the entity in the text)\n",
660
+ " * **结束位置:** (the ending index of the entity in the text)\n",
661
+ " * **关键词提取:** A list of dictionaries, each containing:\n",
662
+ " * **关键词:** (the extracted keyword)\n",
663
+ " * **权重:** (the importance score of the keyword) \n",
664
+ "\n",
665
+ "\n",
666
+ "\n",
667
+ "```\n",
668
+ "```json\n",
669
+ "{\n",
670
+ " \"文本分析结果\": {\n",
671
+ " \"情感分析\": {\n",
672
+ " \"整体情感\": \"积极\",\n",
673
+ " \"情感得分\": 0.85,\n",
674
+ " \"情感细分\": {\n",
675
+ " \"高兴\": 0.6,\n",
676
+ " \"期待\": 0.25,\n",
677
+ " \"赞赏\": 0.1\n",
678
+ " }\n",
679
+ " },\n",
680
+ " \"实体识别\": [\n",
681
+ " {\n",
682
+ " \"实体\": \"马云\",\n",
683
+ " \"类型\": \"人物\",\n",
684
+ " \"起始位置\": 29,\n",
685
+ " \"结束位置\": 33\n",
686
+ " },\n",
687
+ " {\n",
688
+ " \"实体\": \"阿里巴巴集团\",\n",
689
+ " \"类型\": \"组织\",\n",
690
+ " \"起始位置\": 16,\n",
691
+ " \"结束位置\": 27\n",
692
+ " },\n",
693
+ " {\n",
694
+ " \"实体\": \"北京国家会议中心\",\n",
695
+ " \"类型\": \"地点\",\n",
696
+ " \"起始位置\": 7,\n",
697
+ " \"结束位置\": 21\n",
698
+ " },\n",
699
+ " {\n",
700
+ " \"实体\": \"中国\",\n",
701
+ " \"类型\": \"国家\",\n",
702
+ " \"起始位置\": 60,\n",
703
+ " \"结束位置\": 63\n",
704
+ " }\n",
705
+ " ],\n",
706
+ " \"关键词提取\": [\n",
707
+ " {\n",
708
+ " \"关键词\": \"投资\",\n",
709
+ " \"权重\": 0.25\n",
710
+ " },\n",
711
+ " {\n",
712
+ " \"关键词\": \"农村电商\",\n",
713
+ " \"权重\": 0.2\n",
714
+ " },\n",
715
+ " {\n",
716
+ " \"关键词\": \"马云\",\n",
717
+ " \"权重\": 0.18\n",
718
+ " },\n",
719
+ " {\n",
720
+ " \"关键词\": \"阿里巴巴\",\n",
721
+ " \"权重\": 0.15\n",
722
+ " },\n",
723
+ " {\n",
724
+ " \"关键词\": \"北京国家会议中心\",\n",
725
+ " \"权重\": 0.12\n",
726
+ " }\n",
727
+ " ]\n",
728
+ " }\n",
729
+ "}\n",
730
+ "``` \n",
731
+ "\n",
732
+ "**Explanation:**\n",
733
+ "\n",
734
+ "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
735
+ "* **实体识别:** The entities identified are:\n",
736
+ " * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
737
+ " * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
738
+ " * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
739
+ " * **中国 (China):** A country, the beneficiary of the investment.\n",
740
+ "* **关键词提取:** The keywords extracted are:\n",
741
+ " * **投资 (investment):** The core action of the announcement.\n",
742
+ " * **农村电商 (rural e-commerce):** The focus of the investment.\n",
743
+ " * **马云 (Jack Ma):** The key person making the announcement.\n",
744
+ " * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
745
+ " * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
746
+ "\n",
747
+ "\n",
748
+ "\n",
749
+ "Let me know if you have any other text you'd like me to analyze!\n",
750
+ "```\n",
751
+ "- Acceptable Differences: \n",
752
+ " * Differences in digital values in the table.\n",
753
+ " * Differences in JSON field values\n",
754
+ " * Differences in section/item orders.\n",
755
+ "- Unacceptable Differences: \n",
756
+ " * \"情感细分\" field values are different.\n",
757
+ " * \"实体识别\" field values are different.\n",
758
+ " * \"关键词提取\" field values are different.\n",
759
+ "- Accept: No \n",
760
+ "``` \n",
761
+ "\n",
762
+ "\n",
763
+ "\n",
764
+ "\n",
765
+ "\n",
766
+ "- The System Prompt should remove the example text. \n",
767
+ "- The System Prompt should specify the expected format of the output as JSON. \n",
768
+ "- The System Prompt should include a requirement for a \"国家\" (country) entity type. \n",
769
+ "\n",
770
+ "\n",
771
+ "\n",
772
+ "```\n",
773
+ "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
774
+ "\n",
775
+ "* **文本分析结果:**\n",
776
+ " * **情感分析:**\n",
777
+ " * **整体情感:** (e.g., 积极, 消极, 中性)\n",
778
+ " * **情感得分:** (a number between 0 and 1)\n",
779
+ " * **情感细分:** (a dictionary of emotions and their scores)\n",
780
+ " * **实体识别:** A list of dictionaries, each containing:\n",
781
+ " * **实体:** (e.g., 人名, 地名, 组织名)\n",
782
+ " * **类型:** (e.g., 人物, 地点, 组织, 国家)\n",
783
+ " * **起始位置:** (the starting index of the entity in the text)\n",
784
+ " * **结束位置:** (the ending index of the entity in the text)\n",
785
+ " * **关键词提取:** A list of dictionaries, each containing:\n",
786
+ " * **关键词:** (the extracted keyword)\n",
787
+ " * **权重:** (the importance score of the keyword) \n",
788
+ "```\n",
789
+ "```json\n",
790
+ "{\n",
791
+ " \"文本分析结果\": {\n",
792
+ " \"情感分析\": {\n",
793
+ " \"整体情感\": \"积极\",\n",
794
+ " \"情感得分\": 0.85,\n",
795
+ " \"情感细分\": {\n",
796
+ " \"高兴\": 0.6,\n",
797
+ " \"期待\": 0.25,\n",
798
+ " \"赞赏\": 0.1\n",
799
+ " }\n",
800
+ " },\n",
801
+ " \"实体识别\": [\n",
802
+ " {\n",
803
+ " \"实体\": \"马云\",\n",
804
+ " \"类型\": \"人物\",\n",
805
+ " \"起始位置\": 29,\n",
806
+ " \"结束位置\": 33\n",
807
+ " },\n",
808
+ " {\n",
809
+ " \"实体\": \"阿里巴巴集团\",\n",
810
+ " \"类型\": \"组织\",\n",
811
+ " \"起始位置\": 16,\n",
812
+ " \"结束位置\": 27\n",
813
+ " },\n",
814
+ " {\n",
815
+ " \"实体\": \"北京国家会议中心\",\n",
816
+ " \"类型\": \"地点\",\n",
817
+ " \"起始位置\": 7,\n",
818
+ " \"结束位置\": 21\n",
819
+ " },\n",
820
+ " {\n",
821
+ " \"实体\": \"中国\",\n",
822
+ " \"类型\": \"国家\",\n",
823
+ " \"起始位置\": 60,\n",
824
+ " \"结束位置\": 63\n",
825
+ " }\n",
826
+ " ],\n",
827
+ " \"关键词提取\": [\n",
828
+ " {\n",
829
+ " \"关键词\": \"投资\",\n",
830
+ " \"权重\": 0.2\n",
831
+ " },\n",
832
+ " {\n",
833
+ " \"关键词\": \"农村电商\",\n",
834
+ " \"权重\": 0.18\n",
835
+ " },\n",
836
+ " {\n",
837
+ " \"关键词\": \"马云\",\n",
838
+ " \"权重\": 0.15\n",
839
+ " },\n",
840
+ " {\n",
841
+ " \"关键词\": \"阿里巴巴\",\n",
842
+ " \"权重\": 0.12\n",
843
+ " },\n",
844
+ " {\n",
845
+ " \"关键词\": \"机遇\",\n",
846
+ " \"权重\": 0.1\n",
847
+ " }\n",
848
+ " ]\n",
849
+ " }\n",
850
+ "}\n",
851
+ "``` \n",
852
+ "\n",
853
+ "\n",
854
+ "**Explanation:**\n",
855
+ "\n",
856
+ "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
857
+ "* **实体识别:** The entities identified are:\n",
858
+ " * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
859
+ " * **阿里巴巴集团 (Alibaba Group):** An organization, a multinational technology company.\n",
860
+ " * **北京国家会议中心 (Beijing National Convention Center):** A location, a convention center in Beijing.\n",
861
+ " * **中国 (China):** A country.\n",
862
+ "* **关键词提取:** The keywords extracted are:\n",
863
+ " * **投资 (investment):** Reflects the main action in the text.\n",
864
+ " * **农村电商 (rural e-commerce):** The focus of the investment.\n",
865
+ " * **马云 (Jack Ma):** The person making the announcement.\n",
866
+ " * **阿里巴巴 (Alibaba):** The company making the investment.\n",
867
+ " * **机遇 (opportunity):** The positive outcome expected from the investment.\n",
868
+ "\n",
869
+ "\n",
870
+ "\n",
871
+ "Let me know if you have any other text you'd like me to analyze!\n",
872
+ "\n",
873
+ "\n",
874
+ "# Analysis\n",
875
+ "\n",
876
+ "* Both outputs provide similar JSON structures with consistent sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
877
+ "* The \"情感分析\" section in both outputs shows a positive sentiment with a score around 0.85.\n",
878
+ "* The \"实体识别\" sections identify similar entities, including \"马云\", \"阿里巴巴集团\", \"北京国家会议中心\", and \"中国\".\n",
879
+ "* The \"关键词提取\" sections also show overlapping keywords like \"投资\", \"农村电商\", \"马云\", and \"阿里巴巴\".\n",
880
+ "\n",
881
+ "However, there are some notable differences:\n",
882
+ "\n",
883
+ "* Output A includes \"北京国家会议中心\" as a keyword, while Output B does not.\n",
884
+ "* Output B assigns slightly different weights to some keywords compared to Output A.\n",
885
+ "* Output A's \"情感分析\" section includes \"乐观\" and \"兴奋\" as emotions, while Output B uses \"高兴\" and \"期待\".\n",
886
+ "\n",
887
+ "* Output A's \"实体识别\" section includes \"北京\", \"国家会议中心\", \"100亿元\", and \"人民币\", which are not present in Output B.\n",
888
+ "\n",
889
+ "# Preferred Output ID: A \n",
890
+ "\n",
891
+ "\n",
892
+ "\n",
893
+ "Result: A\n",
894
+ "Best Output Age: 1\n",
895
+ "\n",
896
+ "\n",
897
+ "- The System Prompt should remove the example text of the expected output. \n",
898
+ "- The System Prompt should specify that the \"实体识别\" field should include \"金额\" and \"货币\" as entity types. \n",
899
+ "- The System Prompt should specify that the \"关键词提取\" field should include keywords related to the context of the text. \n",
900
+ "\n",
901
+ "\n",
902
+ "\n",
903
+ "\n",
904
+ "```\n",
905
+ "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
906
+ "\n",
907
+ "* **文本分析结果:**\n",
908
+ " * **情感分析:**\n",
909
+ " * **整体情感:** (e.g., 积极, 消极, 中性)\n",
910
+ " * **情感得分:** (a number between 0 and 1)\n",
911
+ " * **情感细分:** (a dictionary of emotions and their scores)\n",
912
+ " * **实体识别:** A list of dictionaries, each containing:\n",
913
+ " * **实体:** (e.g., 人名, 地名, 组织名)\n",
914
+ " * **类型:** (e.g., 人物, 地点, 组织, 金额, 货币)\n",
915
+ " * **起始位置:** (the starting index of the entity in the text)\n",
916
+ " * **结束位置:** (the ending index of the entity in the text)\n",
917
+ " * **关键词提取:** A list of dictionaries, each containing:\n",
918
+ " * **关键词:** (the extracted keyword)\n",
919
+ " * **权重:** (the importance score of the keyword) \n",
920
+ "\n",
921
+ "\n",
922
+ "\n",
923
+ "```\n",
924
+ "```json\n",
925
+ "{\n",
926
+ " \"文本分析结果\": {\n",
927
+ " \"情感分析\": {\n",
928
+ " \"整体情感\": \"积极\",\n",
929
+ " \"情感得分\": 0.85,\n",
930
+ " \"情感细分\": {\n",
931
+ " \"高兴\": 0.6,\n",
932
+ " \"期待\": 0.25,\n",
933
+ " \"赞赏\": 0.1\n",
934
+ " }\n",
935
+ " },\n",
936
+ " \"实体识别\": [\n",
937
+ " {\n",
938
+ " \"实体\": \"马云\",\n",
939
+ " \"类型\": \"人物\",\n",
940
+ " \"起始位置\": 29,\n",
941
+ " \"结束位置\": 33\n",
942
+ " },\n",
943
+ " {\n",
944
+ " \"实体\": \"阿里巴巴集团\",\n",
945
+ " \"类型\": \"组织\",\n",
946
+ " \"起始位置\": 16,\n",
947
+ " \"结束位置\": 27\n",
948
+ " },\n",
949
+ " {\n",
950
+ " \"实体\": \"北京国家会议中心\",\n",
951
+ " \"类型\": \"地点\",\n",
952
+ " \"起始位置\": 7,\n",
953
+ " \"结束位置\": 21\n",
954
+ " },\n",
955
+ " {\n",
956
+ " \"实体\": \"100亿元人民币\",\n",
957
+ " \"类型\": \"金额\",\n",
958
+ " \"起始位置\": 38,\n",
959
+ " \"结束位置\": 51\n",
960
+ " },\n",
961
+ " {\n",
962
+ " \"实体\": \"中国农村经济\",\n",
963
+ " \"类型\": \"经济\",\n",
964
+ " \"起始位置\": 70,\n",
965
+ " \"结束位置\": 83\n",
966
+ " }\n",
967
+ " ],\n",
968
+ " \"关键词提取\": [\n",
969
+ " {\n",
970
+ " \"关键词\": \"马云\",\n",
971
+ " \"权重\": 0.25\n",
972
+ " },\n",
973
+ " {\n",
974
+ " \"关键词\": \"阿里巴巴\",\n",
975
+ " \"权重\": 0.18\n",
976
+ " },\n",
977
+ " {\n",
978
+ " \"关键词\": \"投资\",\n",
979
+ " \"权重\": 0.15\n",
980
+ " },\n",
981
+ " {\n",
982
+ " \"关键词\": \"农村电商\",\n",
983
+ " \"权重\": 0.12\n",
984
+ " },\n",
985
+ " {\n",
986
+ " \"关键词\": \"机遇\",\n",
987
+ " \"权重\": 0.1\n",
988
+ " }\n",
989
+ " ]\n",
990
+ " }\n",
991
+ "}\n",
992
+ "``` \n",
993
+ "\n",
994
+ "**Explanation:**\n",
995
+ "\n",
996
+ "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
997
+ "* **实体识别:** The entities identified are:\n",
998
+ " * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
999
+ " * **阿里巴巴集团 (Alibaba Group):** An organization.\n",
1000
+ " * **北京国家会议中心 (Beijing National Convention Center):** A location.\n",
1001
+ " * **100亿元人民币 (10 billion yuan):** An amount of money.\n",
1002
+ " * **中国农村经济 (Chinese rural economy):** An economic concept.\n",
1003
+ "* **关键词提取:** The keywords extracted are:\n",
1004
+ " * **马云 (Jack Ma):** The main subject of the announcement.\n",
1005
+ " * **阿里巴巴 (Alibaba):** The company making the investment.\n",
1006
+ " * **投资 (investment):** The core action being taken.\n",
1007
+ " * **农村电商 (rural e-commerce):** The area of focus for the investment.\n",
1008
+ " * **机遇 (opportunity):** The positive outcome expected from the investment.\n",
1009
+ "\n",
1010
+ "\n",
1011
+ "\n",
1012
+ "Let me know if you have any other text you'd like me to analyze!\n",
1013
+ "\n",
1014
+ "\n",
1015
+ "# Analysis\n",
1016
+ "\n",
1017
+ "* Both outputs provide similar JSON structures with consistent top-level sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
1018
+ "* The \"情感分析\" section in both outputs shows a positive sentiment with a score close to 0.85. \n",
1019
+ "* There are differences in the specific emotions detected and the scores assigned to them.\n",
1020
+ "* The \"实体识别\" sections identify some overlapping entities but also have differences in the detected entities and their classifications.\n",
1021
+ "* The \"关键词提取\" sections show variations in the extracted keywords and their assigned weights.\n",
1022
+ "\n",
1023
+ "Considering the acceptable differences outlined in the Acceptance Criteria, both outputs demonstrate a reasonable level of similarity to the Expected Output. \n",
1024
+ "\n",
1025
+ "# Draw \n",
1026
+ "\n",
1027
+ "\n",
1028
+ "\n",
1029
+ "Result: A\n",
1030
+ "Best Output Age: 2\n",
1031
+ "\n",
1032
+ "\n",
1033
+ "- The System Prompt should remove the example text within the `文本分析结果` section. \n",
1034
+ "- The System Prompt should specify that the `实体识别` section should include all named entities in the text, not just a subset. \n",
1035
+ "- The System Prompt should specify that the `关键词提取` section should include the most relevant keywords, not just a few. \n",
1036
+ "\n",
1037
+ "\n",
1038
+ "\n",
1039
+ "```\n",
1040
+ "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
1041
+ "\n",
1042
+ "* **文本分析结果:**\n",
1043
+ " * **情感分析:**\n",
1044
+ " * **整体情感:** (e.g., 积极, 消极, 中性)\n",
1045
+ " * **情感得分:** (a number between 0 and 1)\n",
1046
+ " * **情感细分:** (a dictionary of emotions and their scores)\n",
1047
+ " * **实体识别:** A list of dictionaries, each containing:\n",
1048
+ " * **实体:** (e.g., 人名, 地名, 组织名)\n",
1049
+ " * **类型:** (e.g., 人物, 地点, 组织)\n",
1050
+ " * **起始位置:** (the starting index of the entity in the text)\n",
1051
+ " * **结束位置:** (the ending index of the entity in the text)\n",
1052
+ " * **关键词提取:** A list of dictionaries, each containing:\n",
1053
+ " * **关键词:** (the extracted keyword)\n",
1054
+ " * **权重:** (the importance score of the keyword) \n",
1055
+ "\n",
1056
+ "\n",
1057
+ "\n",
1058
+ "```\n",
1059
+ "```json\n",
1060
+ "{\n",
1061
+ " \"文本分析结果\": {\n",
1062
+ " \"情感分析\": {\n",
1063
+ " \"整体情感\": \"积极\",\n",
1064
+ " \"情感得分\": 0.85,\n",
1065
+ " \"情感细分\": {\n",
1066
+ " \"高兴\": 0.6,\n",
1067
+ " \"期待\": 0.25,\n",
1068
+ " \"赞赏\": 0.1\n",
1069
+ " }\n",
1070
+ " },\n",
1071
+ " \"实体识别\": [\n",
1072
+ " {\n",
1073
+ " \"实体\": \"马云\",\n",
1074
+ " \"类型\": \"人物\",\n",
1075
+ " \"起始位置\": 29,\n",
1076
+ " \"结束位置\": 33\n",
1077
+ " },\n",
1078
+ " {\n",
1079
+ " \"实体\": \"阿里巴巴集团\",\n",
1080
+ " \"类型\": \"组织\",\n",
1081
+ " \"起始位置\": 16,\n",
1082
+ " \"结束位置\": 27\n",
1083
+ " },\n",
1084
+ " {\n",
1085
+ " \"实体\": \"北京国家会议中心\",\n",
1086
+ " \"类型\": \"地点\",\n",
1087
+ " \"起始位置\": 7,\n",
1088
+ " \"结束位置\": 21\n",
1089
+ " },\n",
1090
+ " {\n",
1091
+ " \"实体\": \"中国\",\n",
1092
+ " \"类型\": \"国家\",\n",
1093
+ " \"起始位置\": 60,\n",
1094
+ " \"结束位置\": 63\n",
1095
+ " }\n",
1096
+ " ],\n",
1097
+ " \"关键词提取\": [\n",
1098
+ " {\n",
1099
+ " \"关键词\": \"投资\",\n",
1100
+ " \"权重\": 0.25\n",
1101
+ " },\n",
1102
+ " {\n",
1103
+ " \"关键词\": \"农村电商\",\n",
1104
+ " \"权重\": 0.2\n",
1105
+ " },\n",
1106
+ " {\n",
1107
+ " \"关键词\": \"马云\",\n",
1108
+ " \"权重\": 0.18\n",
1109
+ " },\n",
1110
+ " {\n",
1111
+ " \"关键词\": \"阿里巴巴\",\n",
1112
+ " \"权重\": 0.15\n",
1113
+ " },\n",
1114
+ " {\n",
1115
+ " \"关键词\": \"北京国家会议中心\",\n",
1116
+ " \"权重\": 0.12\n",
1117
+ " }\n",
1118
+ " ]\n",
1119
+ " }\n",
1120
+ "}\n",
1121
+ "``` \n",
1122
+ "\n",
1123
+ "**Explanation:**\n",
1124
+ "\n",
1125
+ "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
1126
+ "* **实体识别:** The entities identified are:\n",
1127
+ " * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
1128
+ " * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
1129
+ " * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
1130
+ " * **中国 (China):** A country, the beneficiary of the investment.\n",
1131
+ "* **关键词提取:** The keywords extracted are:\n",
1132
+ " * **投资 (investment):** The core action of the announcement.\n",
1133
+ " * **农村电商 (rural e-commerce):** The target area of the investment.\n",
1134
+ " * **马云 (Jack Ma):** The key person making the announcement.\n",
1135
+ " * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
1136
+ " * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
1137
+ "\n",
1138
+ "\n",
1139
+ "\n",
1140
+ "Let me know if you have any other text you'd like me to analyze!\n",
1141
+ "\n",
1142
+ "\n",
1143
+ "# Analysis\n",
1144
+ "\n",
1145
+ "* Both outputs have the same top-level sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
1146
+ "* Both outputs have consistent data types for all JSON fields.\n",
1147
+ "* Both outputs have similar structures within each section. \n",
1148
+ "* There are differences in the specific values for \"情感得分\", \"情感细分\", \"实体识别\" entities, and \"关键词提取\" keywords.\n",
1149
+ "\n",
1150
+ "# Preferred Output ID: A \n",
1151
+ "\n",
1152
+ "\n",
1153
+ "While both outputs are structured similarly and adhere to the Acceptance Criteria, Output A is preferred because it closely mirrors the expected output's structure and field names. \n",
1154
+ "\n",
1155
+ "\n",
1156
+ "\n",
1157
+ "Result: A\n",
1158
+ "Best Output Age: 3\n",
1159
+ "Final Result: {'acceptance_criteria': '\\n* Consistent with Expected Output:\\n * Formats of all JSON sections\\n * Data types of all JSON fields\\n * Top layer sections\\n* Acceptable differences:\\n * Differences in digital values in the table.\\n * Extra or missing spaces.\\n * Extra or missing line breaks at the beginning or end of the output.\\n * Differences in JSON field values\\n * Differences in section/item orders.\\n * JSON wrapped in backquotes.\\n', 'user_message': '\\n今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。\\n', 'expected_output': '\\n{\\n \"文本分析结果\": {\\n \"情感分析\": {\\n \"整体情感\": \"积极\",\\n \"情感得分\": 0.82,\\n \"情感细分\": {\\n \"乐观\": 0.75,\\n \"兴奋\": 0.60,\\n \"期待\": 0.85\\n }\\n },\\n \"实体识别\": [\\n {\"实体\": \"北京\", \"类型\": \"地点\", \"起始位置\": 7, \"结束位置\": 9},\\n {\"实体\": \"国家会议中心\", \"类型\": \"地点\", \"起始位置\": 9, \"结束位置\": 15},\\n {\"实体\": \"阿里巴巴集团\", \"类型\": \"组织\", \"起始位置\": 16, \"结束位置\": 22},\\n {\"实体\": \"马云\", \"类型\": \"人物\", \"起始位置\": 26, \"结束位置\": 28},\\n {\"实体\": \"100亿元\", \"类型\": \"金额\", \"起始位置\": 32, \"结束位置\": 37},\\n {\"实体\": \"人民币\", \"类型\": \"货币\", \"起始位置\": 37, \"结束位置\": 40},\\n {\"实体\": \"中国\", \"类型\": \"地点\", \"起始位置\": 71, \"结束位置\": 73}\\n ],\\n \"关键词提取\": [\\n {\"关键词\": \"农村电商\", \"权重\": 0.95},\\n {\"关键词\": \"马云\", \"权重\": 0.85},\\n {\"关键词\": \"投资\", \"权重\": 0.80},\\n {\"关键词\": \"阿里巴巴\", \"权重\": 0.75},\\n {\"关键词\": \"经济机遇\", \"权重\": 0.70}\\n ]\\n }\\n}\\n', 'system_message': '```\\nYou are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\\n\\n* **文本分析结��:**\\n * **情感分析:**\\n * **整体情感:** (e.g., 积极, 消极, 中性)\\n * **情感得分:** (a number between 0 and 1)\\n * **情感细分:** (a dictionary of emotions and their scores)\\n * **实体识别:** A list of dictionaries, each containing:\\n * **实体:** (e.g., 人名, 地名, 组织名)\\n * **类型:** (e.g., 人物, 地点, 组织)\\n * **起始位置:** (the starting index of the entity in the text)\\n * **结束位置:** (the ending index of the entity in the text)\\n * **关键词提取:** A list of dictionaries, each containing:\\n * **关键词:** (the extracted keyword)\\n * **权重:** (the importance score of the keyword) \\n\\n\\n\\n```', 'output': '```json\\n{\\n \"文本分析结果\": {\\n \"情感分析\": {\\n \"整体情感\": \"积极\",\\n \"情感得分\": 0.85,\\n \"情感细分\": {\\n \"高兴\": 0.6,\\n \"期待\": 0.25,\\n \"赞赏\": 0.1\\n }\\n },\\n \"实体识别\": [\\n {\\n \"实体\": \"马云\",\\n \"类型\": \"人物\",\\n \"起始位置\": 29,\\n \"结束位置\": 33\\n },\\n {\\n \"实体\": \"阿里巴巴集团\",\\n \"类型\": \"组织\",\\n \"起始位置\": 16,\\n \"结束位置\": 27\\n },\\n {\\n \"实体\": \"北京国家会议中心\",\\n \"类型\": \"地点\",\\n \"起始位置\": 7,\\n \"结束位置\": 21\\n },\\n {\\n \"实体\": \"中国\",\\n \"类型\": \"国家\",\\n \"起始位置\": 60,\\n \"结束位置\": 63\\n }\\n ],\\n \"关键词提取\": [\\n {\\n \"关键词\": \"投资\",\\n \"权重\": 0.25\\n },\\n {\\n \"关键词\": \"农村电商\",\\n \"权重\": 0.2\\n },\\n {\\n \"关键词\": \"马云\",\\n \"权重\": 0.18\\n },\\n {\\n \"关键词\": \"阿里巴巴\",\\n \"权重\": 0.15\\n },\\n {\\n \"关键词\": \"北京国家会议中心\",\\n \"权重\": 0.12\\n }\\n ]\\n }\\n}\\n``` \\n\\n**Explanation:**\\n\\n* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\\n* **实体识别:** The entities identified are:\\n * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\\n * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\\n * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\\n * **中国 (China):** A country, the beneficiary of the investment.\\n* **关键词提取:** The keywords extracted are:\\n * **投资 (investment):** The core action of the announcement.\\n * **农村电商 (rural e-commerce):** The focus of the investment.\\n * **马云 (Jack Ma):** The key person making the announcement.\\n * **阿里巴巴 (Alibaba):** The company behind the investment.\\n * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\\n\\n\\n\\nLet me know if you have any other text you\\'d like me to analyze!', 'suggestions': '\\n\\n- The System Prompt should remove the example text within the `文本分析结果` section. \\n- The System Prompt should specify that the `实体识别` section should include all named entities in the text, not just a subset. \\n- The System Prompt should specify that the `关键词提取` section should include the most relevant keywords, not just a few. \\n\\n\\n', 'accepted': False, 'analysis': '```\\n- Acceptable Differences: \\n * Differences in digital values in the table.\\n * Differences in JSON field values\\n * Differences in section/item orders.\\n- Unacceptable Differences: \\n * \"情感细分\" field values are different.\\n * \"实体识别\" field values are different.\\n * \"关键词提取\" field values are different.\\n- Accept: No \\n``` \\n\\n\\n', 'best_output': '```json\\n{\\n \"文本分析结果\": {\\n \"情感分析\": {\\n \"整体情感\": \"积极\",\\n \"情感得分\": 0.85,\\n \"情感细分\": {\\n \"高兴\": 0.6,\\n \"期待\": 0.25,\\n \"赞赏\": 0.1\\n }\\n },\\n \"实体识别\": [\\n {\\n \"实体\": \"马云\",\\n \"类型\": \"人物\",\\n \"起始位置\": 29,\\n \"结束位置\": 33\\n },\\n {\\n \"实体\": \"阿里巴巴集团\",\\n \"类型\": \"组织\",\\n \"起始位置\": 16,\\n \"结束位置\": 27\\n },\\n {\\n \"实体\": \"北京国家会议中心\",\\n \"类型\": \"地点\",\\n \"起始位置\": 7,\\n \"结束位置\": 21\\n },\\n {\\n \"实体\": \"中国\",\\n \"类型\": \"国家\",\\n \"起始位置\": 60,\\n \"结束位置\": 63\\n }\\n ],\\n \"关键词提取\": [\\n {\\n \"关键词\": \"投资\",\\n \"权重\": 0.25\\n },\\n {\\n \"关键词\": \"农村电商\",\\n \"权重\": 0.2\\n },\\n {\\n \"关键词\": \"马云\",\\n \"权重\": 0.18\\n },\\n {\\n \"关键词\": \"阿里巴巴\",\\n \"权重\": 0.15\\n },\\n {\\n \"关键词\": \"北京国家会议中心\",\\n \"权重\": 0.12\\n }\\n ]\\n }\\n}\\n``` \\n\\n**Explanation:**\\n\\n* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\\n* **实体识别:** The entities identified are:\\n * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\\n * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\\n * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\\n * **中国 (China):** A country, the beneficiary of the investment.\\n* **关键词提取:** The keywords extracted are:\\n * **投资 (investment):** The core action of the announcement.\\n * **农村电商 (rural e-commerce):** The focus of the investment.\\n * **马云 (Jack Ma):** The key person making the announcement.\\n * **阿里巴巴 (Alibaba):** The company behind the investment.\\n * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\\n\\n\\n\\nLet me know if you have any other text you\\'d like me to analyze!', 'best_system_message': '```\\nYou are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\\n\\n* **文本分析结果:**\\n * **情感分析:**\\n * **整体情感:** (e.g., 积极, 消极, 中性)\\n * **情感得分:** (a number between 0 and 1)\\n * **情感细分:** (a dictionary of emotions and their scores)\\n * **实体识别:** A list of dictionaries, each containing:\\n * **实体:** (e.g., 人名, 地名, 组织名)\\n * **类型:** (e.g., 人物, 地点, 组织)\\n * **起始位置:** (the starting index of the entity in the text)\\n * **结束位置:** (the ending index of the entity in the text)\\n * **关键词提取:** A list of dictionaries, each containing:\\n * **关键词:** (the extracted keyword)\\n * **权重:** (the importance score of the keyword) \\n\\n\\n\\n```', 'best_output_age': 3, 'max_output_age': 3}\n",
1160
+ "System Message:\n",
1161
+ "```\n",
1162
+ "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
1163
+ "\n",
1164
+ "* **文本分析结果:**\n",
1165
+ " * **情感分析:**\n",
1166
+ " * **整体情感:** (e.g., 积极, 消极, 中性)\n",
1167
+ " * **情感得分:** (a number between 0 and 1)\n",
1168
+ " * **情感细分:** (a dictionary of emotions and their scores)\n",
1169
+ " * **实体识别:** A list of dictionaries, each containing:\n",
1170
+ " * **实体:** (e.g., 人名, 地名, 组织名)\n",
1171
+ " * **类型:** (e.g., 人物, 地点, 组织)\n",
1172
+ " * **起始位置:** (the starting index of the entity in the text)\n",
1173
+ " * **结束位置:** (the ending index of the entity in the text)\n",
1174
+ " * **关键词提取:** A list of dictionaries, each containing:\n",
1175
+ " * **关键词:** (the extracted keyword)\n",
1176
+ " * **权重:** (the importance score of the keyword) \n",
1177
+ "\n",
1178
+ "\n",
1179
+ "\n",
1180
+ "```\n",
1181
+ "Output:\n",
1182
+ "```json\n",
1183
+ "{\n",
1184
+ " \"文本分析结果\": {\n",
1185
+ " \"情感分析\": {\n",
1186
+ " \"整体情感\": \"积极\",\n",
1187
+ " \"情感得分\": 0.85,\n",
1188
+ " \"情感细分\": {\n",
1189
+ " \"高兴\": 0.6,\n",
1190
+ " \"期待\": 0.25,\n",
1191
+ " \"赞赏\": 0.1\n",
1192
+ " }\n",
1193
+ " },\n",
1194
+ " \"实体识别\": [\n",
1195
+ " {\n",
1196
+ " \"实体\": \"马云\",\n",
1197
+ " \"类型\": \"人物\",\n",
1198
+ " \"起始位置\": 29,\n",
1199
+ " \"结束位置\": 33\n",
1200
+ " },\n",
1201
+ " {\n",
1202
+ " \"实体\": \"阿里巴巴集团\",\n",
1203
+ " \"类型\": \"组织\",\n",
1204
+ " \"起始位置\": 16,\n",
1205
+ " \"结束位置\": 27\n",
1206
+ " },\n",
1207
+ " {\n",
1208
+ " \"实体\": \"北京国家会议中心\",\n",
1209
+ " \"类型\": \"地点\",\n",
1210
+ " \"起始位置\": 7,\n",
1211
+ " \"结束位置\": 21\n",
1212
+ " },\n",
1213
+ " {\n",
1214
+ " \"实体\": \"中国\",\n",
1215
+ " \"类型\": \"国家\",\n",
1216
+ " \"起始位置\": 60,\n",
1217
+ " \"结束位置\": 63\n",
1218
+ " }\n",
1219
+ " ],\n",
1220
+ " \"关键词提取\": [\n",
1221
+ " {\n",
1222
+ " \"关键词\": \"投资\",\n",
1223
+ " \"权重\": 0.25\n",
1224
+ " },\n",
1225
+ " {\n",
1226
+ " \"关键词\": \"农村电商\",\n",
1227
+ " \"权重\": 0.2\n",
1228
+ " },\n",
1229
+ " {\n",
1230
+ " \"关键词\": \"马云\",\n",
1231
+ " \"权重\": 0.18\n",
1232
+ " },\n",
1233
+ " {\n",
1234
+ " \"关键词\": \"阿里巴巴\",\n",
1235
+ " \"权重\": 0.15\n",
1236
+ " },\n",
1237
+ " {\n",
1238
+ " \"关键词\": \"北京国家会议中心\",\n",
1239
+ " \"权重\": 0.12\n",
1240
+ " }\n",
1241
+ " ]\n",
1242
+ " }\n",
1243
+ "}\n",
1244
+ "``` \n",
1245
+ "\n",
1246
+ "**Explanation:**\n",
1247
+ "\n",
1248
+ "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85. The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
1249
+ "* **实体识别:** The entities identified are:\n",
1250
+ " * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
1251
+ " * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
1252
+ " * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
1253
+ " * **中国 (China):** A country, the beneficiary of the investment.\n",
1254
+ "* **关键词提取:** The keywords extracted are:\n",
1255
+ " * **投资 (investment):** The core action of the announcement.\n",
1256
+ " * **农村电商 (rural e-commerce):** The focus of the investment.\n",
1257
+ " * **马云 (Jack Ma):** The key person making the announcement.\n",
1258
+ " * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
1259
+ " * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
1260
+ "\n",
1261
+ "\n",
1262
+ "\n",
1263
+ "Let me know if you have any other text you'd like me to analyze!\n"
1264
+ ]
1265
+ }
1266
+ ],
1267
  "source": [
1268
  "initial_states = [\n",
1269
  " AgentState(\n",
prompt_ui.py → demo/prompt_ui.py RENAMED
@@ -24,7 +24,7 @@ from langchain.schema import HumanMessage, SystemMessage
24
  from sklearn.feature_extraction.text import CountVectorizer
25
  from sklearn.metrics.pairwise import cosine_similarity
26
 
27
- from default_meta_prompts import *
28
 
29
  gpt_models_not_legacy = [
30
  "gpt-4",
 
24
  from sklearn.feature_extraction.text import CountVectorizer
25
  from sklearn.metrics.pairwise import cosine_similarity
26
 
27
+ from demo.default_meta_prompts import *
28
 
29
  gpt_models_not_legacy = [
30
  "gpt-4",
src/meta_prompt/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .meta_prompt import AgentState, MetaPromptGraph
meta_prompt_graph.py → src/meta_prompt/meta_prompt.py RENAMED
File without changes
meta_prompt_graph_test.py → tests/meta_prompt_graph_test.py RENAMED
@@ -5,7 +5,7 @@ from unittest.mock import MagicMock
5
  from unittest.mock import patch
6
 
7
  # Assuming the necessary imports are made for the classes and functions used in meta_prompt_graph.py
8
- from meta_prompt_graph import MetaPromptGraph, AgentState
9
 
10
  from langchain_openai import ChatOpenAI
11
 
 
5
  from unittest.mock import patch
6
 
7
  # Assuming the necessary imports are made for the classes and functions used in meta_prompt_graph.py
8
+ from meta_prompt import AgentState, MetaPromptGraph
9
 
10
  from langchain_openai import ChatOpenAI
11