Spaces:
Running
Running
Applied Gradio state for gradio_meta_prompt.
Browse files- app/gradio_meta_prompt.py +189 -408
app/gradio_meta_prompt.py
CHANGED
@@ -166,91 +166,44 @@ def chat_log_2_chatbot_list(chat_log: str) -> List[List[str]]:
|
|
166 |
print(line)
|
167 |
return chatbot_list
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
correspond to a key in the 'llms' section of the application's configuration.
|
206 |
-
advanced_model_name (str): The name of the advanced language model. This should
|
207 |
-
correspond to a key in the 'llms' section of the application's configuration.
|
208 |
-
expert_model_name (str): The name of the expert language model. This should
|
209 |
-
correspond to a key in the 'llms' section of the application's configuration.
|
210 |
-
expert_model_config (Optional[Dict[str, Any]]): Optional configuration for the
|
211 |
-
expert model. This configuration will be used to update the model configuration
|
212 |
-
if the active model tab is "Expert". Defaults to None.
|
213 |
-
|
214 |
-
Returns:
|
215 |
-
BaseLanguageModel: An instance of a language model that inherits from
|
216 |
-
BaseLanguageModel, based on the currently active model tab and the provided
|
217 |
-
model names.
|
218 |
-
|
219 |
-
Raises:
|
220 |
-
ValueError: If the active model tab is not found in the mapping or if the model
|
221 |
-
name or configuration is invalid.
|
222 |
-
RuntimeError: If an unexpected error occurs while retrieving the model.
|
223 |
-
"""
|
224 |
-
model_mapping = {
|
225 |
-
"Simple": simple_model_name,
|
226 |
-
"Advanced": advanced_model_name,
|
227 |
-
"Expert": expert_model_name
|
228 |
-
}
|
229 |
-
|
230 |
-
try:
|
231 |
-
model_name = model_mapping.get(active_model_tab, simple_model_name)
|
232 |
-
model = config.llms[model_name]
|
233 |
-
model_type = model.type
|
234 |
-
model_config = model.model_dump(exclude={'type'})
|
235 |
-
|
236 |
-
# Update the configuration with the expert model configurations if provided
|
237 |
-
if active_model_tab == "Expert" and expert_model_config:
|
238 |
-
model_config.update(expert_model_config)
|
239 |
-
|
240 |
-
return LLMModelFactory().create(model_type, **model_config)
|
241 |
-
|
242 |
-
except KeyError as e:
|
243 |
-
logging.error(f"Configuration key error: {e}")
|
244 |
-
raise ValueError(f"Invalid model name or configuration: {e}")
|
245 |
|
246 |
-
|
247 |
-
logging.error(f"An unexpected error occurred: {e}")
|
248 |
-
raise RuntimeError(f"Failed to retrieve the model: {e}")
|
249 |
-
|
250 |
-
|
251 |
-
def evaluate_system_message(system_message, user_message, simple_model,
|
252 |
-
advanced_executor_model, expert_executor_model,
|
253 |
-
expert_executor_model_temperature=0.1):
|
254 |
"""
|
255 |
Evaluate a system message by using it to generate a response from an
|
256 |
executor model based on the current active tab and provided user message.
|
@@ -265,17 +218,8 @@ def evaluate_system_message(system_message, user_message, simple_model,
|
|
265 |
response.
|
266 |
user_message (str): The user's input message for which a response will
|
267 |
be generated.
|
268 |
-
|
269 |
-
|
270 |
-
configuration.
|
271 |
-
advanced_executor_model (str): The name of the advanced language model.
|
272 |
-
This should correspond to a key in the 'llms' section of the
|
273 |
-
application's configuration.
|
274 |
-
expert_executor_model (str): The name of the expert language model.
|
275 |
-
This should correspond to a key in the 'llms' section of the
|
276 |
-
application's configuration.
|
277 |
-
expert_executor_model_temperature (float, optional): The temperature
|
278 |
-
parameter for the expert executor model. Defaults to 0.1.
|
279 |
|
280 |
Returns:
|
281 |
str: The content of the output generated by the LLM based on the system
|
@@ -287,9 +231,7 @@ def evaluate_system_message(system_message, user_message, simple_model,
|
|
287 |
Exception: For any other unexpected errors that occur during the
|
288 |
execution of this function.
|
289 |
"""
|
290 |
-
llm =
|
291 |
-
expert_executor_model,
|
292 |
-
{"temperature": expert_executor_model_temperature})
|
293 |
template = ChatPromptTemplate.from_messages([
|
294 |
("system", "{system_message}"),
|
295 |
("human", "{user_message}")
|
@@ -304,11 +246,7 @@ def evaluate_system_message(system_message, user_message, simple_model,
|
|
304 |
raise gr.Error(f"Error: {e}")
|
305 |
|
306 |
|
307 |
-
def generate_acceptance_criteria(user_message, expected_output,
|
308 |
-
simple_model, advanced_executor_model,
|
309 |
-
expert_prompt_acceptance_criteria_model,
|
310 |
-
expert_prompt_acceptance_criteria_temperature=0.1,
|
311 |
-
prompt_template_group: Optional[str] = None):
|
312 |
"""
|
313 |
Generate acceptance criteria based on the user message and expected output.
|
314 |
|
@@ -319,17 +257,12 @@ def generate_acceptance_criteria(user_message, expected_output,
|
|
319 |
user_message (str): The user's input message.
|
320 |
expected_output (str): The anticipated response or outcome from the language
|
321 |
model based on the user's message.
|
322 |
-
|
323 |
-
advanced_executor_model (str): The name of the advanced language model.
|
324 |
-
expert_prompt_acceptance_criteria_model (str): The name of the expert language
|
325 |
-
model.
|
326 |
-
expert_prompt_acceptance_criteria_temperature (float, optional): The temperature
|
327 |
-
parameter for the expert model. Defaults to 0.1.
|
328 |
prompt_template_group (Optional[str], optional): The group of prompt templates
|
329 |
to use. Defaults to None.
|
330 |
|
331 |
Returns:
|
332 |
-
|
333 |
"""
|
334 |
|
335 |
log_stream = io.StringIO()
|
@@ -342,9 +275,7 @@ def generate_acceptance_criteria(user_message, expected_output,
|
|
342 |
)
|
343 |
logger.addHandler(log_handler)
|
344 |
|
345 |
-
llm =
|
346 |
-
expert_prompt_acceptance_criteria_model,
|
347 |
-
{"temperature": expert_prompt_acceptance_criteria_temperature})
|
348 |
if prompt_template_group is None:
|
349 |
prompt_template_group = 'default'
|
350 |
prompt_templates = prompt_templates_confz2langchain(
|
@@ -371,10 +302,7 @@ def generate_acceptance_criteria(user_message, expected_output,
|
|
371 |
def generate_initial_system_message(
|
372 |
user_message: str,
|
373 |
expected_output: str,
|
374 |
-
|
375 |
-
advanced_executor_model: str,
|
376 |
-
expert_prompt_initial_developer_model: str,
|
377 |
-
expert_prompt_initial_developer_temperature: float = 0.1,
|
378 |
prompt_template_group: Optional[str] = None
|
379 |
) -> tuple:
|
380 |
"""
|
@@ -383,11 +311,7 @@ def generate_initial_system_message(
|
|
383 |
Args:
|
384 |
user_message (str): The user's input message.
|
385 |
expected_output (str): The anticipated response or outcome from the language model.
|
386 |
-
|
387 |
-
advanced_executor_model (str): The name of the advanced language model.
|
388 |
-
expert_prompt_initial_developer_model (str): The name of the expert language model.
|
389 |
-
expert_prompt_initial_developer_temperature (float, optional):
|
390 |
-
The temperature parameter for the expert model. Defaults to 0.1.
|
391 |
prompt_template_group (Optional[str], optional):
|
392 |
The group of prompt templates to use. Defaults to None.
|
393 |
|
@@ -405,12 +329,7 @@ def generate_initial_system_message(
|
|
405 |
)
|
406 |
logger.addHandler(log_handler)
|
407 |
|
408 |
-
llm =
|
409 |
-
simple_model,
|
410 |
-
advanced_executor_model,
|
411 |
-
expert_prompt_initial_developer_model,
|
412 |
-
{"temperature": expert_prompt_initial_developer_temperature}
|
413 |
-
)
|
414 |
|
415 |
if prompt_template_group is None:
|
416 |
prompt_template_group = 'default'
|
@@ -442,45 +361,40 @@ def generate_initial_system_message(
|
|
442 |
return system_message, chat_log_2_chatbot_list(log_output)
|
443 |
|
444 |
|
445 |
-
def
|
446 |
user_message: str, expected_output: str, acceptance_criteria: str,
|
447 |
initial_system_message: str, recursion_limit: int, max_output_age: int,
|
448 |
-
|
|
|
|
|
449 |
prompt_template_group: Optional[str] = None,
|
450 |
aggressive_exploration: bool = False
|
451 |
) -> tuple:
|
452 |
"""
|
453 |
-
Process a user message by executing the MetaPromptGraph with provided
|
454 |
-
language models and input state.
|
455 |
|
456 |
-
This function sets up the initial state of the conversation, logs the
|
457 |
-
|
458 |
-
output, and analysis from the output state of the MetaPromptGraph.
|
459 |
|
460 |
Args:
|
461 |
-
user_message (str): The user's input message to be processed by the
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
prompt_template_group (Optional[str], optional): The group of prompt
|
477 |
-
templates to use. Defaults to None.
|
478 |
-
aggressive_exploration (bool, optional): Whether to use aggressive
|
479 |
-
exploration. Defaults to False.
|
480 |
|
481 |
Returns:
|
482 |
-
tuple: A tuple containing the best system message, output, analysis,
|
483 |
-
acceptance criteria, and chat log in JSON format.
|
484 |
"""
|
485 |
input_state = AgentState(
|
486 |
user_message=user_message,
|
@@ -501,6 +415,15 @@ def process_message(
|
|
501 |
if prompt_template_group is None:
|
502 |
prompt_template_group = 'default'
|
503 |
prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates,
|
505 |
aggressive_exploration=aggressive_exploration,
|
506 |
verbose=config.verbose, logger=logger)
|
@@ -573,219 +496,6 @@ def initialize_llm(model_name: str, model_config: Optional[Dict[str, Any]] = Non
|
|
573 |
)
|
574 |
|
575 |
|
576 |
-
def process_message_with_single_llm(
|
577 |
-
user_message: str, expected_output: str, acceptance_criteria: str,
|
578 |
-
initial_system_message: str, recursion_limit: int, max_output_age: int,
|
579 |
-
model_name: str, prompt_template_group: Optional[str] = None,
|
580 |
-
aggressive_exploration: bool = False
|
581 |
-
) -> tuple:
|
582 |
-
"""
|
583 |
-
Process a user message using a single language model.
|
584 |
-
|
585 |
-
This function initializes a language model based on the provided model name
|
586 |
-
and uses it to process the user's message. The function takes in additional
|
587 |
-
parameters such as the user's message, expected output, acceptance criteria,
|
588 |
-
initial system message, recursion limit, and max output age. It then calls
|
589 |
-
the `process_message` function with the initialized language model to obtain
|
590 |
-
the best system message, output, analysis, and chat log.
|
591 |
-
|
592 |
-
Parameters:
|
593 |
-
user_message (str): The user's input message to be processed by the language
|
594 |
-
model.
|
595 |
-
expected_output (str): The anticipated response or outcome from the language
|
596 |
-
model based on the user's message.
|
597 |
-
acceptance_criteria (str): Criteria that determines whether the output is
|
598 |
-
acceptable or not.
|
599 |
-
initial_system_message (str): Initial instruction given to the language
|
600 |
-
model before processing the user's message.
|
601 |
-
recursion_limit (int): The maximum number of times the MetaPromptGraph can
|
602 |
-
call itself recursively.
|
603 |
-
max_output_age (int): The maximum age of output messages that should be
|
604 |
-
considered in the conversation history.
|
605 |
-
model_name (str): The name of the language model to initialize and use for
|
606 |
-
processing the user's message. This should correspond to a key in the
|
607 |
-
'llms' section of the application's configuration.
|
608 |
-
prompt_template_group (Optional[str], optional): The name of the prompt
|
609 |
-
template group to use for processing the user's message. Defaults to None.
|
610 |
-
aggressive_exploration (bool, optional): Whether to use aggressive
|
611 |
-
exploration techniques. Defaults to False.
|
612 |
-
|
613 |
-
Returns:
|
614 |
-
tuple: A tuple containing the best system message, output, analysis, and
|
615 |
-
chat log in JSON format.
|
616 |
-
- best_system_message (str): The system message that resulted in the
|
617 |
-
most appropriate response based on the acceptance criteria.
|
618 |
-
- best_output (str): The output generated by the language model that
|
619 |
-
best meets the expected outcome and acceptance criteria.
|
620 |
-
- analysis (str): An analysis of how well the generated output
|
621 |
-
matches the expected output and acceptance criteria.
|
622 |
-
- chat_log (list): A list containing JSON objects representing the
|
623 |
-
conversation log, with each object containing a timestamp, logger
|
624 |
-
name, levelname, and message.
|
625 |
-
"""
|
626 |
-
llm = initialize_llm(model_name)
|
627 |
-
return process_message(
|
628 |
-
user_message, expected_output, acceptance_criteria, initial_system_message,
|
629 |
-
recursion_limit, max_output_age, llm, prompt_template_group, aggressive_exploration
|
630 |
-
)
|
631 |
-
|
632 |
-
|
633 |
-
def process_message_with_2_llms(
|
634 |
-
user_message: str, expected_output: str, acceptance_criteria: str,
|
635 |
-
initial_system_message: str, recursion_limit: int, max_output_age: int,
|
636 |
-
optimizer_model_name: str, executor_model_name: str,
|
637 |
-
prompt_template_group: Optional[str] = None,
|
638 |
-
aggressive_exploration: bool = False
|
639 |
-
) -> tuple:
|
640 |
-
"""
|
641 |
-
Process a user message using two language models - one for optimization and
|
642 |
-
another for execution.
|
643 |
-
|
644 |
-
This function initializes the specified optimizer and executor language
|
645 |
-
models and then uses them to process the user's message along with other
|
646 |
-
provided input parameters such as expected output, acceptance criteria,
|
647 |
-
initial system message, recursion limit, and max output age. The result is
|
648 |
-
obtained by calling the `process_message` function with a dictionary of
|
649 |
-
language models where all nodes except for NODE_PROMPT_EXECUTOR use the
|
650 |
-
optimizer model and NODE_PROMPT_EXECUTOR uses the executor model.
|
651 |
-
|
652 |
-
Args:
|
653 |
-
user_message (str): The user's input message to be processed by the
|
654 |
-
language models.
|
655 |
-
expected_output (str): The anticipated response or outcome from the
|
656 |
-
language models based on the user's message.
|
657 |
-
acceptance_criteria (str): Criteria that determines whether the output
|
658 |
-
is acceptable or not.
|
659 |
-
initial_system_message (str): Initial instruction given to the language
|
660 |
-
models before processing the user's message.
|
661 |
-
recursion_limit (int): The maximum number of times the MetaPromptGraph
|
662 |
-
can call itself recursively.
|
663 |
-
max_output_age (int): The maximum age of output messages that should be
|
664 |
-
considered in the conversation history.
|
665 |
-
optimizer_model_name (str): The name of the language model to initialize
|
666 |
-
and use for optimization tasks like prompt development, analysis,
|
667 |
-
and suggestion. This should correspond to a key in the 'llms' section
|
668 |
-
of the application's configuration.
|
669 |
-
executor_model_name (str): The name of the language model to initialize
|
670 |
-
and use for execution tasks like running code or providing final
|
671 |
-
outputs. This should correspond to a key in the 'llms' section of the
|
672 |
-
application's configuration.
|
673 |
-
prompt_template_group (Optional[str], optional): The name of the prompt
|
674 |
-
template group to use for processing the user's message. Defaults to
|
675 |
-
None.
|
676 |
-
aggressive_exploration (bool, optional): Whether to use aggressive
|
677 |
-
exploration techniques. Defaults to False.
|
678 |
-
|
679 |
-
Returns:
|
680 |
-
tuple: A tuple containing the best system message, output, analysis, and
|
681 |
-
chat log in JSON format.
|
682 |
-
- best_system_message (str): The system message that resulted in the
|
683 |
-
most appropriate response based on the acceptance criteria.
|
684 |
-
- best_output (str): The output generated by the language models that
|
685 |
-
best meets the expected outcome and acceptance criteria.
|
686 |
-
- analysis (str): An analysis of how well the generated output
|
687 |
-
matches the expected output and acceptance criteria.
|
688 |
-
- chat_log (list): A list containing JSON objects representing the
|
689 |
-
conversation log, with each object containing a timestamp,
|
690 |
-
logger name, levelname, and message.
|
691 |
-
"""
|
692 |
-
optimizer_model = initialize_llm(optimizer_model_name)
|
693 |
-
executor_model = initialize_llm(executor_model_name)
|
694 |
-
llms = {
|
695 |
-
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: optimizer_model,
|
696 |
-
NODE_PROMPT_INITIAL_DEVELOPER: optimizer_model,
|
697 |
-
NODE_PROMPT_DEVELOPER: optimizer_model,
|
698 |
-
NODE_PROMPT_EXECUTOR: executor_model,
|
699 |
-
NODE_OUTPUT_HISTORY_ANALYZER: optimizer_model,
|
700 |
-
NODE_PROMPT_ANALYZER: optimizer_model,
|
701 |
-
NODE_PROMPT_SUGGESTER: optimizer_model
|
702 |
-
}
|
703 |
-
return process_message(
|
704 |
-
user_message, expected_output, acceptance_criteria,
|
705 |
-
initial_system_message, recursion_limit, max_output_age, llms,
|
706 |
-
prompt_template_group, aggressive_exploration
|
707 |
-
)
|
708 |
-
|
709 |
-
|
710 |
-
def process_message_with_expert_llms(
|
711 |
-
user_message: str, expected_output: str, acceptance_criteria: str,
|
712 |
-
initial_system_message: str, recursion_limit: int, max_output_age: int,
|
713 |
-
initial_developer_model_name: str, initial_developer_temperature: float,
|
714 |
-
acceptance_criteria_model_name: str, acceptance_criteria_temperature: float,
|
715 |
-
developer_model_name: str, developer_temperature: float,
|
716 |
-
executor_model_name: str, executor_temperature: float,
|
717 |
-
output_history_analyzer_model_name: str, output_history_analyzer_temperature: float,
|
718 |
-
analyzer_model_name: str, analyzer_temperature: float,
|
719 |
-
suggester_model_name: str, suggester_temperature: float,
|
720 |
-
prompt_template_group: Optional[str] = None, aggressive_exploration: bool = False
|
721 |
-
) -> tuple:
|
722 |
-
"""
|
723 |
-
Process a message using expert language models with specified temperatures.
|
724 |
-
|
725 |
-
Args:
|
726 |
-
user_message (str): The user's input message.
|
727 |
-
expected_output (str): The anticipated response or outcome from the language model.
|
728 |
-
acceptance_criteria (str): Criteria for accepting the generated output.
|
729 |
-
initial_system_message (str): The initial system message to use.
|
730 |
-
recursion_limit (int): The maximum number of recursive calls.
|
731 |
-
max_output_age (int): The maximum age of output messages to consider.
|
732 |
-
initial_developer_model_name (str): The name of the initial developer model.
|
733 |
-
initial_developer_temperature (float): The temperature for the initial developer model.
|
734 |
-
acceptance_criteria_model_name (str): The name of the acceptance criteria model.
|
735 |
-
acceptance_criteria_temperature (float): The temperature for the acceptance criteria model.
|
736 |
-
developer_model_name (str): The name of the developer model.
|
737 |
-
developer_temperature (float): The temperature for the developer model.
|
738 |
-
executor_model_name (str): The name of the executor model.
|
739 |
-
executor_temperature (float): The temperature for the executor model.
|
740 |
-
output_history_analyzer_model_name (str): The name of the output history analyzer model.
|
741 |
-
output_history_analyzer_temperature (float): The temperature for the output history analyzer model.
|
742 |
-
analyzer_model_name (str): The name of the analyzer model.
|
743 |
-
analyzer_temperature (float): The temperature for the analyzer model.
|
744 |
-
suggester_model_name (str): The name of the suggester model.
|
745 |
-
suggester_temperature (float): The temperature for the suggester model.
|
746 |
-
prompt_template_group (Optional[str], optional): The group of prompt templates to use. Defaults to None.
|
747 |
-
aggressive_exploration (bool, optional): Whether to use aggressive exploration. Defaults to False.
|
748 |
-
|
749 |
-
Returns:
|
750 |
-
tuple: A tuple containing the processed message results.
|
751 |
-
"""
|
752 |
-
llms = {
|
753 |
-
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(
|
754 |
-
initial_developer_model_name, {"temperature": initial_developer_temperature}
|
755 |
-
),
|
756 |
-
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(
|
757 |
-
acceptance_criteria_model_name, {"temperature": acceptance_criteria_temperature}
|
758 |
-
),
|
759 |
-
NODE_PROMPT_DEVELOPER: initialize_llm(
|
760 |
-
developer_model_name, {"temperature": developer_temperature}
|
761 |
-
),
|
762 |
-
NODE_PROMPT_EXECUTOR: initialize_llm(
|
763 |
-
executor_model_name, {"temperature": executor_temperature}
|
764 |
-
),
|
765 |
-
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(
|
766 |
-
output_history_analyzer_model_name,
|
767 |
-
{"temperature": output_history_analyzer_temperature}
|
768 |
-
),
|
769 |
-
NODE_PROMPT_ANALYZER: initialize_llm(
|
770 |
-
analyzer_model_name, {"temperature": analyzer_temperature}
|
771 |
-
),
|
772 |
-
NODE_PROMPT_SUGGESTER: initialize_llm(
|
773 |
-
suggester_model_name, {"temperature": suggester_temperature}
|
774 |
-
)
|
775 |
-
}
|
776 |
-
return process_message(
|
777 |
-
user_message,
|
778 |
-
expected_output,
|
779 |
-
acceptance_criteria,
|
780 |
-
initial_system_message,
|
781 |
-
recursion_limit,
|
782 |
-
max_output_age,
|
783 |
-
llms,
|
784 |
-
prompt_template_group,
|
785 |
-
aggressive_exploration
|
786 |
-
)
|
787 |
-
|
788 |
-
|
789 |
class FileConfig(BaseConfig):
|
790 |
config_file: str = 'config.yml' # default path
|
791 |
|
@@ -1028,28 +738,101 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1028 |
simple_model_name_input
|
1029 |
])
|
1030 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1031 |
# set up event handlers
|
1032 |
-
simple_llm_tab.select(
|
1033 |
-
|
1034 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1035 |
|
1036 |
generate_acceptance_criteria_button.click(
|
1037 |
generate_acceptance_criteria,
|
1038 |
inputs=[user_message_input, expected_output_input,
|
1039 |
-
|
1040 |
-
advanced_optimizer_model_name_input,
|
1041 |
-
expert_prompt_acceptance_criteria_model_name_input,
|
1042 |
-
expert_prompt_acceptance_criteria_temperature_input,
|
1043 |
prompt_template_group],
|
1044 |
outputs=[acceptance_criteria_input, logs_chatbot]
|
1045 |
)
|
1046 |
generate_initial_system_message_button.click(
|
1047 |
generate_initial_system_message,
|
1048 |
inputs=[user_message_input, expected_output_input,
|
1049 |
-
|
1050 |
-
advanced_optimizer_model_name_input,
|
1051 |
-
expert_prompt_initial_developer_model_name_input,
|
1052 |
-
expert_prompt_initial_developer_temperature_input,
|
1053 |
prompt_template_group],
|
1054 |
outputs=[initial_system_message_input, logs_chatbot]
|
1055 |
)
|
@@ -1059,10 +842,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1059 |
inputs=[
|
1060 |
initial_system_message_input,
|
1061 |
user_message_input,
|
1062 |
-
|
1063 |
-
advanced_executor_model_name_input,
|
1064 |
-
expert_prompt_executor_model_name_input,
|
1065 |
-
expert_prompt_executor_temperature_input
|
1066 |
],
|
1067 |
outputs=[output_output]
|
1068 |
)
|
@@ -1071,10 +851,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1071 |
inputs=[
|
1072 |
system_message_output,
|
1073 |
user_message_input,
|
1074 |
-
|
1075 |
-
advanced_executor_model_name_input,
|
1076 |
-
expert_prompt_executor_model_name_input,
|
1077 |
-
expert_prompt_executor_temperature_input
|
1078 |
],
|
1079 |
outputs=[output_output]
|
1080 |
)
|
@@ -1090,7 +867,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1090 |
analysis_output, logs_chatbot])
|
1091 |
|
1092 |
simple_submit_button.click(
|
1093 |
-
|
1094 |
inputs=[
|
1095 |
user_message_input,
|
1096 |
expected_output_input,
|
@@ -1098,7 +875,13 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1098 |
initial_system_message_input,
|
1099 |
recursion_limit_input,
|
1100 |
max_output_age,
|
1101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
prompt_template_group,
|
1103 |
aggressive_exploration
|
1104 |
],
|
@@ -1112,7 +895,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1112 |
)
|
1113 |
|
1114 |
advanced_submit_button.click(
|
1115 |
-
|
1116 |
inputs=[
|
1117 |
user_message_input,
|
1118 |
expected_output_input,
|
@@ -1120,8 +903,13 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1120 |
initial_system_message_input,
|
1121 |
recursion_limit_input,
|
1122 |
max_output_age,
|
1123 |
-
|
1124 |
-
|
|
|
|
|
|
|
|
|
|
|
1125 |
prompt_template_group,
|
1126 |
aggressive_exploration
|
1127 |
],
|
@@ -1135,7 +923,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1135 |
)
|
1136 |
|
1137 |
expert_submit_button.click(
|
1138 |
-
|
1139 |
inputs=[
|
1140 |
user_message_input,
|
1141 |
expected_output_input,
|
@@ -1143,20 +931,13 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
1143 |
initial_system_message_input,
|
1144 |
recursion_limit_input,
|
1145 |
max_output_age,
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
expert_prompt_executor_temperature_input,
|
1154 |
-
expert_output_history_analyzer_model_name_input,
|
1155 |
-
expert_output_history_analyzer_temperature_input,
|
1156 |
-
expert_prompt_analyzer_model_name_input,
|
1157 |
-
expert_prompt_analyzer_temperature_input,
|
1158 |
-
expert_prompt_suggester_model_name_input,
|
1159 |
-
expert_prompt_suggester_temperature_input,
|
1160 |
prompt_template_group,
|
1161 |
aggressive_exploration
|
1162 |
],
|
|
|
166 |
print(line)
|
167 |
return chatbot_list
|
168 |
|
169 |
+
def on_model_tab_select(simple_model_name,
|
170 |
+
advanced_optimizer_model_name, advanced_executor_model_name,
|
171 |
+
expert_prompt_initial_developer_model_name,
|
172 |
+
expert_prompt_acceptance_criteria_developer_model_name,
|
173 |
+
expert_prompt_developer_model_name,
|
174 |
+
expert_prompt_executor_model_name,
|
175 |
+
expert_prompt_history_analyzer_model_name,
|
176 |
+
expert_prompt_analyzer_model_name,
|
177 |
+
expert_prompt_suggester_model_name,
|
178 |
+
event: gr.SelectData):
|
179 |
+
if event.value == 'Simple':
|
180 |
+
return simple_model_name, \
|
181 |
+
simple_model_name, \
|
182 |
+
simple_model_name, \
|
183 |
+
simple_model_name, \
|
184 |
+
simple_model_name, \
|
185 |
+
simple_model_name, \
|
186 |
+
simple_model_name
|
187 |
+
elif event.value == 'Advanced':
|
188 |
+
return advanced_optimizer_model_name, \
|
189 |
+
advanced_optimizer_model_name, \
|
190 |
+
advanced_optimizer_model_name, \
|
191 |
+
advanced_executor_model_name, \
|
192 |
+
advanced_optimizer_model_name, \
|
193 |
+
advanced_optimizer_model_name, \
|
194 |
+
advanced_optimizer_model_name
|
195 |
+
elif event.value == 'Expert':
|
196 |
+
return expert_prompt_initial_developer_model_name, \
|
197 |
+
expert_prompt_acceptance_criteria_developer_model_name, \
|
198 |
+
expert_prompt_developer_model_name, \
|
199 |
+
expert_prompt_executor_model_name, \
|
200 |
+
expert_prompt_history_analyzer_model_name, \
|
201 |
+
expert_prompt_analyzer_model_name, \
|
202 |
+
expert_prompt_suggester_model_name
|
203 |
+
else:
|
204 |
+
raise ValueError(f"Invalid model tab selected: {event.value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
def evaluate_system_message(system_message, user_message, executor_model_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
"""
|
208 |
Evaluate a system message by using it to generate a response from an
|
209 |
executor model based on the current active tab and provided user message.
|
|
|
218 |
response.
|
219 |
user_message (str): The user's input message for which a response will
|
220 |
be generated.
|
221 |
+
executor_model_state (gr.State): The state object containing the name
|
222 |
+
of the executor model to use.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
Returns:
|
225 |
str: The content of the output generated by the LLM based on the system
|
|
|
231 |
Exception: For any other unexpected errors that occur during the
|
232 |
execution of this function.
|
233 |
"""
|
234 |
+
llm = initialize_llm(executor_model_name)
|
|
|
|
|
235 |
template = ChatPromptTemplate.from_messages([
|
236 |
("system", "{system_message}"),
|
237 |
("human", "{user_message}")
|
|
|
246 |
raise gr.Error(f"Error: {e}")
|
247 |
|
248 |
|
249 |
+
def generate_acceptance_criteria(user_message, expected_output, acceptance_criteria_model_name, prompt_template_group):
|
|
|
|
|
|
|
|
|
250 |
"""
|
251 |
Generate acceptance criteria based on the user message and expected output.
|
252 |
|
|
|
257 |
user_message (str): The user's input message.
|
258 |
expected_output (str): The anticipated response or outcome from the language
|
259 |
model based on the user's message.
|
260 |
+
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use.
|
|
|
|
|
|
|
|
|
|
|
261 |
prompt_template_group (Optional[str], optional): The group of prompt templates
|
262 |
to use. Defaults to None.
|
263 |
|
264 |
Returns:
|
265 |
+
tuple: A tuple containing the generated acceptance criteria and the chat log.
|
266 |
"""
|
267 |
|
268 |
log_stream = io.StringIO()
|
|
|
275 |
)
|
276 |
logger.addHandler(log_handler)
|
277 |
|
278 |
+
llm = initialize_llm(acceptance_criteria_model_name)
|
|
|
|
|
279 |
if prompt_template_group is None:
|
280 |
prompt_template_group = 'default'
|
281 |
prompt_templates = prompt_templates_confz2langchain(
|
|
|
302 |
def generate_initial_system_message(
|
303 |
user_message: str,
|
304 |
expected_output: str,
|
305 |
+
initial_developer_model_name: str,
|
|
|
|
|
|
|
306 |
prompt_template_group: Optional[str] = None
|
307 |
) -> tuple:
|
308 |
"""
|
|
|
311 |
Args:
|
312 |
user_message (str): The user's input message.
|
313 |
expected_output (str): The anticipated response or outcome from the language model.
|
314 |
+
initial_developer_model_name (str): The name of the initial developer model to use.
|
|
|
|
|
|
|
|
|
315 |
prompt_template_group (Optional[str], optional):
|
316 |
The group of prompt templates to use. Defaults to None.
|
317 |
|
|
|
329 |
)
|
330 |
logger.addHandler(log_handler)
|
331 |
|
332 |
+
llm = initialize_llm(initial_developer_model_name)
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
if prompt_template_group is None:
|
335 |
prompt_template_group = 'default'
|
|
|
361 |
return system_message, chat_log_2_chatbot_list(log_output)
|
362 |
|
363 |
|
364 |
+
def process_message_with_models(
|
365 |
user_message: str, expected_output: str, acceptance_criteria: str,
|
366 |
initial_system_message: str, recursion_limit: int, max_output_age: int,
|
367 |
+
initial_developer_model_name: str, acceptance_criteria_model_name: str,
|
368 |
+
developer_model_name: str, executor_model_name: str, history_analyzer_model_name: str,
|
369 |
+
analyzer_model_name: str, suggester_model_name: str,
|
370 |
prompt_template_group: Optional[str] = None,
|
371 |
aggressive_exploration: bool = False
|
372 |
) -> tuple:
|
373 |
"""
|
374 |
+
Process a user message by executing the MetaPromptGraph with provided language models and input state.
|
|
|
375 |
|
376 |
+
This function sets up the initial state of the conversation, logs the execution if verbose mode is enabled,
|
377 |
+
and extracts the best system message, output, and analysis from the output state of the MetaPromptGraph.
|
|
|
378 |
|
379 |
Args:
|
380 |
+
user_message (str): The user's input message to be processed by the language model(s).
|
381 |
+
expected_output (str): The anticipated response or outcome from the language model(s) based on the user's message.
|
382 |
+
acceptance_criteria (str): Criteria that determines whether the output is acceptable or not.
|
383 |
+
initial_system_message (str): Initial instruction given to the language model(s) before processing the user's message.
|
384 |
+
recursion_limit (int): The maximum number of times the MetaPromptGraph can call itself recursively.
|
385 |
+
max_output_age (int): The maximum age of output messages that should be considered in the conversation history.
|
386 |
+
initial_developer_model_name (str): The name of the initial developer model to use.
|
387 |
+
acceptance_criteria_model_name (str): The name of the acceptance criteria model to use.
|
388 |
+
developer_model_name (str): The name of the developer model to use.
|
389 |
+
executor_model_name (str): The name of the executor model to use.
|
390 |
+
history_analyzer_model_name (str): The name of the history analyzer model to use.
|
391 |
+
analyzer_model_name (str): The name of the analyzer model to use.
|
392 |
+
suggester_model_name (str): The name of the suggester model to use.
|
393 |
+
prompt_template_group (Optional[str], optional): The group of prompt templates to use. Defaults to None.
|
394 |
+
aggressive_exploration (bool, optional): Whether to use aggressive exploration. Defaults to False.
|
|
|
|
|
|
|
|
|
395 |
|
396 |
Returns:
|
397 |
+
tuple: A tuple containing the best system message, output, analysis, acceptance criteria, and chat log in JSON format.
|
|
|
398 |
"""
|
399 |
input_state = AgentState(
|
400 |
user_message=user_message,
|
|
|
415 |
if prompt_template_group is None:
|
416 |
prompt_template_group = 'default'
|
417 |
prompt_templates = prompt_templates_confz2langchain(config.prompt_templates[prompt_template_group])
|
418 |
+
llms = {
|
419 |
+
NODE_PROMPT_INITIAL_DEVELOPER: initialize_llm(initial_developer_model_name),
|
420 |
+
NODE_ACCEPTANCE_CRITERIA_DEVELOPER: initialize_llm(acceptance_criteria_model_name),
|
421 |
+
NODE_PROMPT_DEVELOPER: initialize_llm(developer_model_name),
|
422 |
+
NODE_PROMPT_EXECUTOR: initialize_llm(executor_model_name),
|
423 |
+
NODE_OUTPUT_HISTORY_ANALYZER: initialize_llm(history_analyzer_model_name),
|
424 |
+
NODE_PROMPT_ANALYZER: initialize_llm(analyzer_model_name),
|
425 |
+
NODE_PROMPT_SUGGESTER: initialize_llm(suggester_model_name)
|
426 |
+
}
|
427 |
meta_prompt_graph = MetaPromptGraph(llms=llms, prompts=prompt_templates,
|
428 |
aggressive_exploration=aggressive_exploration,
|
429 |
verbose=config.verbose, logger=logger)
|
|
|
496 |
)
|
497 |
|
498 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
class FileConfig(BaseConfig):
|
500 |
config_file: str = 'config.yml' # default path
|
501 |
|
|
|
738 |
simple_model_name_input
|
739 |
])
|
740 |
|
741 |
+
model_states = {
|
742 |
+
"initial_developer": gr.State(value=None), # None | str
|
743 |
+
"acceptance_criteria": gr.State(value=None), # None | str
|
744 |
+
"developer": gr.State(value=None), # None | str
|
745 |
+
"executor": gr.State(value=None), # None | str
|
746 |
+
"history_analyzer": gr.State(value=None), # None | str
|
747 |
+
"analyzer": gr.State(value=None), # None | str
|
748 |
+
"suggester": gr.State(value=None) # None | str
|
749 |
+
}
|
750 |
+
|
751 |
# set up event handlers
|
752 |
+
simple_llm_tab.select(
|
753 |
+
on_model_tab_select,
|
754 |
+
[
|
755 |
+
simple_model_name_input,
|
756 |
+
advanced_optimizer_model_name_input,
|
757 |
+
advanced_executor_model_name_input,
|
758 |
+
expert_prompt_initial_developer_model_name_input,
|
759 |
+
expert_prompt_acceptance_criteria_model_name_input,
|
760 |
+
expert_prompt_developer_model_name_input,
|
761 |
+
expert_prompt_executor_model_name_input,
|
762 |
+
expert_output_history_analyzer_model_name_input,
|
763 |
+
expert_prompt_analyzer_model_name_input,
|
764 |
+
expert_prompt_suggester_model_name_input
|
765 |
+
],
|
766 |
+
[
|
767 |
+
model_states["initial_developer"],
|
768 |
+
model_states["acceptance_criteria"],
|
769 |
+
model_states["developer"],
|
770 |
+
model_states["executor"],
|
771 |
+
model_states["history_analyzer"],
|
772 |
+
model_states["analyzer"],
|
773 |
+
model_states["suggester"]
|
774 |
+
]
|
775 |
+
)
|
776 |
+
advanced_llm_tab.select(
|
777 |
+
on_model_tab_select,
|
778 |
+
[
|
779 |
+
simple_model_name_input,
|
780 |
+
advanced_optimizer_model_name_input,
|
781 |
+
advanced_executor_model_name_input,
|
782 |
+
expert_prompt_initial_developer_model_name_input,
|
783 |
+
expert_prompt_acceptance_criteria_model_name_input,
|
784 |
+
expert_prompt_developer_model_name_input,
|
785 |
+
expert_prompt_executor_model_name_input,
|
786 |
+
expert_output_history_analyzer_model_name_input,
|
787 |
+
expert_prompt_analyzer_model_name_input,
|
788 |
+
expert_prompt_suggester_model_name_input
|
789 |
+
],
|
790 |
+
[
|
791 |
+
model_states["initial_developer"],
|
792 |
+
model_states["acceptance_criteria"],
|
793 |
+
model_states["developer"],
|
794 |
+
model_states["executor"],
|
795 |
+
model_states["history_analyzer"],
|
796 |
+
model_states["analyzer"],
|
797 |
+
model_states["suggester"]
|
798 |
+
]
|
799 |
+
)
|
800 |
+
expert_llm_tab.select(
|
801 |
+
on_model_tab_select,
|
802 |
+
[
|
803 |
+
simple_model_name_input,
|
804 |
+
advanced_optimizer_model_name_input,
|
805 |
+
advanced_executor_model_name_input,
|
806 |
+
expert_prompt_initial_developer_model_name_input,
|
807 |
+
expert_prompt_acceptance_criteria_model_name_input,
|
808 |
+
expert_prompt_developer_model_name_input,
|
809 |
+
expert_prompt_executor_model_name_input,
|
810 |
+
expert_output_history_analyzer_model_name_input,
|
811 |
+
expert_prompt_analyzer_model_name_input,
|
812 |
+
expert_prompt_suggester_model_name_input
|
813 |
+
],
|
814 |
+
[
|
815 |
+
model_states["initial_developer"],
|
816 |
+
model_states["acceptance_criteria"],
|
817 |
+
model_states["developer"],
|
818 |
+
model_states["executor"],
|
819 |
+
model_states["history_analyzer"],
|
820 |
+
model_states["analyzer"],
|
821 |
+
model_states["suggester"]
|
822 |
+
]
|
823 |
+
)
|
824 |
|
825 |
generate_acceptance_criteria_button.click(
|
826 |
generate_acceptance_criteria,
|
827 |
inputs=[user_message_input, expected_output_input,
|
828 |
+
model_states["acceptance_criteria"],
|
|
|
|
|
|
|
829 |
prompt_template_group],
|
830 |
outputs=[acceptance_criteria_input, logs_chatbot]
|
831 |
)
|
832 |
generate_initial_system_message_button.click(
|
833 |
generate_initial_system_message,
|
834 |
inputs=[user_message_input, expected_output_input,
|
835 |
+
model_states["initial_developer"],
|
|
|
|
|
|
|
836 |
prompt_template_group],
|
837 |
outputs=[initial_system_message_input, logs_chatbot]
|
838 |
)
|
|
|
842 |
inputs=[
|
843 |
initial_system_message_input,
|
844 |
user_message_input,
|
845 |
+
model_states["executor"]
|
|
|
|
|
|
|
846 |
],
|
847 |
outputs=[output_output]
|
848 |
)
|
|
|
851 |
inputs=[
|
852 |
system_message_output,
|
853 |
user_message_input,
|
854 |
+
model_states["executor"]
|
|
|
|
|
|
|
855 |
],
|
856 |
outputs=[output_output]
|
857 |
)
|
|
|
867 |
analysis_output, logs_chatbot])
|
868 |
|
869 |
simple_submit_button.click(
|
870 |
+
process_message_with_models,
|
871 |
inputs=[
|
872 |
user_message_input,
|
873 |
expected_output_input,
|
|
|
875 |
initial_system_message_input,
|
876 |
recursion_limit_input,
|
877 |
max_output_age,
|
878 |
+
model_states["initial_developer"],
|
879 |
+
model_states["acceptance_criteria"],
|
880 |
+
model_states["developer"],
|
881 |
+
model_states["executor"],
|
882 |
+
model_states["history_analyzer"],
|
883 |
+
model_states["analyzer"],
|
884 |
+
model_states["suggester"],
|
885 |
prompt_template_group,
|
886 |
aggressive_exploration
|
887 |
],
|
|
|
895 |
)
|
896 |
|
897 |
advanced_submit_button.click(
|
898 |
+
process_message_with_models,
|
899 |
inputs=[
|
900 |
user_message_input,
|
901 |
expected_output_input,
|
|
|
903 |
initial_system_message_input,
|
904 |
recursion_limit_input,
|
905 |
max_output_age,
|
906 |
+
model_states["initial_developer"],
|
907 |
+
model_states["acceptance_criteria"],
|
908 |
+
model_states["developer"],
|
909 |
+
model_states["executor"],
|
910 |
+
model_states["history_analyzer"],
|
911 |
+
model_states["analyzer"],
|
912 |
+
model_states["suggester"],
|
913 |
prompt_template_group,
|
914 |
aggressive_exploration
|
915 |
],
|
|
|
923 |
)
|
924 |
|
925 |
expert_submit_button.click(
|
926 |
+
process_message_with_models,
|
927 |
inputs=[
|
928 |
user_message_input,
|
929 |
expected_output_input,
|
|
|
931 |
initial_system_message_input,
|
932 |
recursion_limit_input,
|
933 |
max_output_age,
|
934 |
+
model_states["initial_developer"],
|
935 |
+
model_states["acceptance_criteria"],
|
936 |
+
model_states["developer"],
|
937 |
+
model_states["executor"],
|
938 |
+
model_states["history_analyzer"],
|
939 |
+
model_states["analyzer"],
|
940 |
+
model_states["suggester"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
941 |
prompt_template_group,
|
942 |
aggressive_exploration
|
943 |
],
|