Spaces:
Running
Running
Merged Gradio Meta Prompt works.
Browse files- app/gradio_meta_prompt.py +608 -276
- app/gradio_meta_prompt_utils.py +235 -1
- app/gradio_sample_generator.py +1 -234
app/gradio_meta_prompt.py
CHANGED
@@ -30,235 +30,625 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
30 |
gr.Markdown(f"""<h1 style='text-align: left; margin-bottom: 1rem'>Meta Prompt</h1>
|
31 |
<p style="text-align:left">A tool for generating and analyzing natural language prompts using multiple language models.</p>
|
32 |
<a href="https://github.com/yaleh/meta-prompt"><img src="https://img.shields.io/badge/GitHub-blue?logo=github" alt="GitHub"></a>""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Row():
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
value=""
|
50 |
-
)
|
51 |
-
with gr.Row():
|
52 |
-
evaluate_initial_system_message_button = gr.Button(
|
53 |
-
value="Evaluate",
|
54 |
-
variant="secondary"
|
55 |
-
)
|
56 |
-
generate_initial_system_message_button = gr.Button(
|
57 |
-
value="Generate",
|
58 |
-
variant="secondary"
|
59 |
-
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
-
|
67 |
-
|
68 |
-
variant="secondary"
|
69 |
)
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
value=config.max_output_age,
|
82 |
-
precision=0,
|
83 |
-
minimum=1,
|
84 |
-
maximum=config.max_output_age_max,
|
85 |
-
step=1
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
117 |
)
|
118 |
-
|
119 |
-
label="
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
-
# Connect the inputs and outputs to the function
|
124 |
-
with gr.Row():
|
125 |
-
advanced_submit_button = gr.Button(
|
126 |
-
value="Submit", variant="primary")
|
127 |
-
advanced_clear_button = gr.ClearButton(
|
128 |
-
components=[user_message_input, expected_output_input,
|
129 |
-
acceptance_criteria_input, initial_system_message_input],
|
130 |
-
value='Clear All')
|
131 |
-
with gr.Tab('Expert') as expert_llm_tab:
|
132 |
-
with gr.Row():
|
133 |
-
expert_prompt_initial_developer_model_name_input = gr.Dropdown(
|
134 |
-
label="Initial Developer Model Name",
|
135 |
-
choices=config.llms.keys(),
|
136 |
-
value=list(config.llms.keys())[0],
|
137 |
-
)
|
138 |
-
expert_prompt_initial_developer_temperature_input = gr.Number(
|
139 |
-
label="Initial Developer Temperature", value=0.1,
|
140 |
-
precision=1, minimum=0, maximum=1, step=0.1,
|
141 |
-
interactive=True)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
-
|
177 |
-
expert_output_history_analyzer_model_name_input = gr.Dropdown(
|
178 |
-
label="History Analyzer Model Name",
|
179 |
-
choices=config.llms.keys(),
|
180 |
-
value=list(config.llms.keys())[0],
|
181 |
-
)
|
182 |
-
expert_output_history_analyzer_temperature_input = gr.Number(
|
183 |
-
label="History Analyzer Temperature", value=0.1,
|
184 |
-
precision=1, minimum=0, maximum=1, step=0.1,
|
185 |
-
interactive=True)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
)
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
with gr.
|
199 |
-
|
200 |
-
label="
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
203 |
)
|
204 |
-
expert_prompt_suggester_temperature_input = gr.Number(
|
205 |
-
label="Suggester Temperature", value=0.1,
|
206 |
-
precision=1, minimum=0, maximum=1, step=0.1,
|
207 |
-
interactive=True)
|
208 |
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
with gr.Row():
|
211 |
-
|
212 |
-
value="
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
label="Analysis", show_copy_button=True)
|
229 |
-
flag_button = gr.Button(
|
230 |
-
value="Flag", variant="secondary", visible=config.allow_flagging)
|
231 |
-
with gr.Accordion("Details", open=False, visible=config.verbose):
|
232 |
-
logs_chatbot = gr.Chatbot(
|
233 |
-
label='Messages', show_copy_button=True, layout='bubble',
|
234 |
-
bubble_full_width=False, render_markdown=False
|
235 |
-
)
|
236 |
-
clear_logs_button = gr.ClearButton(
|
237 |
-
[logs_chatbot], value='Clear Logs')
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
simple_llm_tab.select(
|
263 |
on_model_tab_select,
|
264 |
[
|
@@ -334,14 +724,14 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
334 |
|
335 |
generate_acceptance_criteria_button.click(
|
336 |
generate_acceptance_criteria,
|
337 |
-
inputs=[config_state,
|
338 |
model_states["acceptance_criteria"],
|
339 |
prompt_template_group],
|
340 |
outputs=[acceptance_criteria_input, logs_chatbot]
|
341 |
)
|
342 |
generate_initial_system_message_button.click(
|
343 |
generate_initial_system_message,
|
344 |
-
inputs=[config_state,
|
345 |
model_states["initial_developer"],
|
346 |
prompt_template_group],
|
347 |
outputs=[initial_system_message_input, logs_chatbot]
|
@@ -352,7 +742,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
352 |
inputs=[
|
353 |
config_state,
|
354 |
initial_system_message_input,
|
355 |
-
|
356 |
model_states["executor"]
|
357 |
],
|
358 |
outputs=[output_output]
|
@@ -362,7 +752,7 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
362 |
inputs=[
|
363 |
config_state,
|
364 |
system_message_output,
|
365 |
-
|
366 |
model_states["executor"]
|
367 |
],
|
368 |
outputs=[output_output]
|
@@ -373,75 +763,17 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
373 |
outputs=[initial_system_message_input]
|
374 |
)
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
simple_submit_button.click(
|
382 |
-
process_message_with_models,
|
383 |
-
inputs=[
|
384 |
-
config_state,
|
385 |
-
user_message_input,
|
386 |
-
expected_output_input,
|
387 |
-
acceptance_criteria_input,
|
388 |
-
initial_system_message_input,
|
389 |
-
recursion_limit_input,
|
390 |
-
max_output_age,
|
391 |
-
model_states["initial_developer"],
|
392 |
-
model_states["acceptance_criteria"],
|
393 |
-
model_states["developer"],
|
394 |
-
model_states["executor"],
|
395 |
-
model_states["history_analyzer"],
|
396 |
-
model_states["analyzer"],
|
397 |
-
model_states["suggester"],
|
398 |
-
prompt_template_group,
|
399 |
-
aggressive_exploration
|
400 |
-
],
|
401 |
-
outputs=[
|
402 |
-
system_message_output,
|
403 |
-
output_output,
|
404 |
-
analysis_output,
|
405 |
-
acceptance_criteria_input,
|
406 |
-
logs_chatbot
|
407 |
-
]
|
408 |
-
)
|
409 |
-
|
410 |
-
advanced_submit_button.click(
|
411 |
-
process_message_with_models,
|
412 |
-
inputs=[
|
413 |
-
config_state,
|
414 |
-
user_message_input,
|
415 |
-
expected_output_input,
|
416 |
-
acceptance_criteria_input,
|
417 |
-
initial_system_message_input,
|
418 |
-
recursion_limit_input,
|
419 |
-
max_output_age,
|
420 |
-
model_states["initial_developer"],
|
421 |
-
model_states["acceptance_criteria"],
|
422 |
-
model_states["developer"],
|
423 |
-
model_states["executor"],
|
424 |
-
model_states["history_analyzer"],
|
425 |
-
model_states["analyzer"],
|
426 |
-
model_states["suggester"],
|
427 |
-
prompt_template_group,
|
428 |
-
aggressive_exploration
|
429 |
-
],
|
430 |
-
outputs=[
|
431 |
-
system_message_output,
|
432 |
-
output_output,
|
433 |
-
analysis_output,
|
434 |
-
acceptance_criteria_input,
|
435 |
-
logs_chatbot
|
436 |
-
]
|
437 |
-
)
|
438 |
|
439 |
-
|
440 |
process_message_with_models,
|
441 |
inputs=[
|
442 |
config_state,
|
443 |
-
|
444 |
-
|
445 |
acceptance_criteria_input,
|
446 |
initial_system_message_input,
|
447 |
recursion_limit_input,
|
@@ -466,8 +798,8 @@ with gr.Blocks(title='Meta Prompt') as demo:
|
|
466 |
)
|
467 |
|
468 |
flagging_inputs = [
|
469 |
-
|
470 |
-
|
471 |
acceptance_criteria_input,
|
472 |
initial_system_message_input
|
473 |
]
|
|
|
30 |
gr.Markdown(f"""<h1 style='text-align: left; margin-bottom: 1rem'>Meta Prompt</h1>
|
31 |
<p style="text-align:left">A tool for generating and analyzing natural language prompts using multiple language models.</p>
|
32 |
<a href="https://github.com/yaleh/meta-prompt"><img src="https://img.shields.io/badge/GitHub-blue?logo=github" alt="GitHub"></a>""")
|
33 |
+
|
34 |
+
input_dataframe = gr.DataFrame(
|
35 |
+
label="Input Examples",
|
36 |
+
headers=["Input", "Output"],
|
37 |
+
datatype=["str", "str"],
|
38 |
+
column_widths=["50%", "50%"],
|
39 |
+
row_count=(1, "dynamic"),
|
40 |
+
col_count=(2, "fixed"),
|
41 |
+
interactive=False,
|
42 |
+
wrap=True
|
43 |
+
)
|
44 |
+
|
45 |
with gr.Row():
|
46 |
+
selected_example_input = gr.Textbox(
|
47 |
+
label="Selected Example Input",
|
48 |
+
lines=2,
|
49 |
+
show_copy_button=True,
|
50 |
+
value="",
|
51 |
+
)
|
52 |
+
selected_example_output = gr.Textbox(
|
53 |
+
label="Selected Example Output",
|
54 |
+
lines=2,
|
55 |
+
show_copy_button=True,
|
56 |
+
value="",
|
57 |
+
)
|
58 |
|
59 |
+
selected_group_mode = gr.State(None) # None, "update", "append"
|
60 |
+
selected_group_index = gr.State(None) # None, int
|
61 |
+
selected_group_input = gr.State("")
|
62 |
+
selected_group_output = gr.State("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
selected_group_input.change(
|
65 |
+
fn=lambda x: x,
|
66 |
+
inputs=[selected_group_input],
|
67 |
+
outputs=[selected_example_input],
|
68 |
+
)
|
69 |
+
selected_group_output.change(
|
70 |
+
fn=lambda x: x,
|
71 |
+
inputs=[selected_group_output],
|
72 |
+
outputs=[selected_example_output],
|
73 |
+
)
|
74 |
+
|
75 |
+
@gr.render(
|
76 |
+
inputs=[
|
77 |
+
selected_group_mode,
|
78 |
+
selected_group_index,
|
79 |
+
selected_group_input,
|
80 |
+
selected_group_output,
|
81 |
+
],
|
82 |
+
triggers=[selected_group_mode.change],
|
83 |
+
)
|
84 |
+
def selected_group(mode, index, input, output):
|
85 |
+
if mode is None:
|
86 |
+
return
|
87 |
+
with gr.Group():
|
88 |
+
if mode == "update":
|
89 |
+
with gr.Row():
|
90 |
+
selected_row_index = gr.Number(
|
91 |
+
label="Selected Row Index", value=index, precision=0, interactive=False
|
92 |
+
)
|
93 |
+
delete_row_button = gr.Button(
|
94 |
+
"Delete Selected Row", variant="secondary"
|
95 |
)
|
96 |
+
with gr.Row():
|
97 |
+
update_row_button = gr.Button(
|
98 |
+
"Update Selected Row", variant="secondary"
|
99 |
)
|
100 |
+
close_button = gr.Button("Close", variant="secondary")
|
101 |
|
102 |
+
delete_row_button.click(
|
103 |
+
fn=delete_selected_dataframe_row,
|
104 |
+
inputs=[selected_row_index, input_dataframe],
|
105 |
+
outputs=[
|
106 |
+
input_dataframe,
|
107 |
+
selected_group_mode,
|
108 |
+
selected_group_index,
|
109 |
+
selected_group_input,
|
110 |
+
selected_group_output,
|
111 |
+
],
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
+
|
114 |
+
update_row_button.click(
|
115 |
+
fn=update_selected_dataframe_row,
|
116 |
+
inputs=[
|
117 |
+
selected_example_input,
|
118 |
+
selected_example_output,
|
119 |
+
selected_row_index,
|
120 |
+
input_dataframe,
|
121 |
+
],
|
122 |
+
outputs=[
|
123 |
+
input_dataframe,
|
124 |
+
selected_group_mode,
|
125 |
+
selected_group_index,
|
126 |
+
selected_group_input,
|
127 |
+
selected_group_output,
|
128 |
+
],
|
129 |
)
|
130 |
+
elif mode == "append":
|
131 |
+
with gr.Row():
|
132 |
+
append_example_button = gr.Button(
|
133 |
+
"Append to Input Examples", variant="secondary"
|
134 |
+
)
|
135 |
+
close_button = gr.Button("Close", variant="secondary")
|
136 |
+
|
137 |
+
append_example_button.click(
|
138 |
+
fn=append_example_to_input_dataframe,
|
139 |
+
inputs=[
|
140 |
+
selected_example_input,
|
141 |
+
selected_example_output,
|
142 |
+
input_dataframe,
|
143 |
+
],
|
144 |
+
outputs=[
|
145 |
+
input_dataframe,
|
146 |
+
selected_group_mode,
|
147 |
+
selected_group_index,
|
148 |
+
selected_group_input,
|
149 |
+
selected_group_output,
|
150 |
+
],
|
151 |
)
|
152 |
+
|
153 |
+
close_button.click(
|
154 |
+
fn=lambda: None,
|
155 |
+
inputs=[],
|
156 |
+
outputs=[selected_group_mode],
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Accordion("Import/Export JSON", open=False):
|
160 |
+
json_file_object = gr.File(
|
161 |
+
label="Import/Export JSON", file_types=[".json"], type="filepath"
|
162 |
+
)
|
163 |
+
export_button = gr.Button("Export to JSON")
|
164 |
+
|
165 |
+
with gr.Tabs() as tabs:
|
166 |
+
|
167 |
+
with gr.Tab("Scope"):
|
168 |
+
|
169 |
with gr.Row():
|
170 |
+
submit_button = gr.Button("Generate", variant="primary")
|
171 |
+
scope_clear_button = gr.ClearButton(
|
172 |
+
[
|
173 |
+
input_dataframe
|
174 |
+
],
|
175 |
+
value="Clear All"
|
176 |
+
)
|
177 |
+
|
178 |
+
examples_output_dataframe = gr.DataFrame(
|
179 |
+
# label="Examples",
|
180 |
+
headers=["Input", "Output"],
|
181 |
+
interactive=False,
|
182 |
+
datatype=["str", "str"],
|
183 |
+
column_widths=["50%", "50%"],
|
184 |
+
row_count=(1, "dynamic"),
|
185 |
+
col_count=(2, "fixed"),
|
186 |
+
wrap=True
|
187 |
+
)
|
188 |
+
|
189 |
+
with gr.Accordion("Model Settings", open=False):
|
190 |
+
model_name = gr.Dropdown(
|
191 |
+
label="Model Name",
|
192 |
+
choices=[
|
193 |
+
"llama3-70b-8192",
|
194 |
+
"llama3-8b-8192",
|
195 |
+
"llama-3.1-70b-versatile",
|
196 |
+
"llama-3.1-8b-instant",
|
197 |
+
"gemma2-9b-it",
|
198 |
+
],
|
199 |
+
value="llama3-70b-8192",
|
200 |
+
)
|
201 |
+
temperature = gr.Slider(
|
202 |
+
label="Temperature", value=1.0, minimum=0.0, maximum=1.0, step=0.1
|
203 |
+
)
|
204 |
+
generating_batch_size = gr.Slider(
|
205 |
+
label="Generating Batch Size", value=3, minimum=1, maximum=10, step=1
|
206 |
+
)
|
207 |
+
|
208 |
+
with gr.Accordion("Analysis", open=False):
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
generate_description_button = gr.Button(
|
212 |
+
"Generate Description", variant="secondary"
|
213 |
)
|
214 |
+
description_output = gr.Textbox(
|
215 |
+
label="Description", lines=5, show_copy_button=True
|
216 |
+
)
|
217 |
+
with gr.Column():
|
218 |
+
# Suggestions components
|
219 |
+
generate_suggestions_button = gr.Button(
|
220 |
+
"Generate Suggestions", variant="secondary")
|
221 |
+
suggestions_output = gr.Dropdown(
|
222 |
+
label="Suggestions", choices=[], multiselect=True, allow_custom_value=True)
|
223 |
+
apply_suggestions_button = gr.Button(
|
224 |
+
"Apply Suggestions", variant="secondary")
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
analyze_input_button = gr.Button(
|
229 |
+
"Analyze Input", variant="secondary"
|
230 |
)
|
231 |
+
input_analysis_output = gr.Textbox(
|
232 |
+
label="Input Analysis", lines=5, show_copy_button=True
|
233 |
+
)
|
234 |
+
with gr.Column():
|
235 |
+
generate_briefs_button = gr.Button(
|
236 |
+
"Generate Briefs", variant="secondary"
|
237 |
+
)
|
238 |
+
example_briefs_output = gr.Textbox(
|
239 |
+
label="Example Briefs", lines=5, show_copy_button=True
|
240 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
generate_examples_directly_button = gr.Button(
|
245 |
+
"Generate Examples Directly", variant="secondary"
|
246 |
+
)
|
247 |
+
examples_directly_output_dataframe = gr.DataFrame(
|
248 |
+
label="Examples Directly",
|
249 |
+
headers=["Input", "Output"],
|
250 |
+
interactive=False,
|
251 |
+
datatype=["str", "str"],
|
252 |
+
column_widths=["50%", "50%"],
|
253 |
+
row_count=(1, "dynamic"),
|
254 |
+
col_count=(2, "fixed"),
|
255 |
+
wrap=True
|
256 |
+
)
|
257 |
|
258 |
+
with gr.Column():
|
259 |
+
generate_examples_from_briefs_button = gr.Button(
|
260 |
+
"Generate Examples from Briefs", variant="secondary"
|
261 |
+
)
|
262 |
+
examples_from_briefs_output_dataframe = gr.DataFrame(
|
263 |
+
label="Examples from Briefs",
|
264 |
+
headers=["Input", "Output"],
|
265 |
+
interactive=False,
|
266 |
+
datatype=["str", "str"],
|
267 |
+
column_widths=["50%", "50%"],
|
268 |
+
row_count=(1, "dynamic"),
|
269 |
+
col_count=(2, "fixed"),
|
270 |
+
wrap=True
|
271 |
+
)
|
272 |
|
273 |
+
scope_clear_button.add(
|
274 |
+
[
|
275 |
+
description_output,
|
276 |
+
suggestions_output,
|
277 |
+
examples_directly_output_dataframe,
|
278 |
+
input_analysis_output,
|
279 |
+
example_briefs_output,
|
280 |
+
examples_from_briefs_output_dataframe,
|
281 |
+
examples_output_dataframe
|
282 |
+
]
|
283 |
+
)
|
284 |
|
285 |
+
with gr.Tab("Prompt"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
with gr.Row():
|
288 |
+
prompt_submit_button = gr.Button(value="Submit", variant="primary")
|
289 |
+
prompt_clear_button = gr.ClearButton(value='Clear All')
|
290 |
+
|
291 |
+
with gr.Row():
|
292 |
+
with gr.Column():
|
293 |
+
with gr.Accordion("Initial System Message & Acceptance Criteria", open=False):
|
294 |
+
|
295 |
+
with gr.Group():
|
296 |
+
initial_system_message_input = gr.Textbox(
|
297 |
+
label="Initial System Message",
|
298 |
+
show_copy_button=True,
|
299 |
+
value=""
|
300 |
)
|
301 |
+
with gr.Row():
|
302 |
+
evaluate_initial_system_message_button = gr.Button(
|
303 |
+
value="Evaluate",
|
304 |
+
variant="secondary"
|
305 |
+
)
|
306 |
+
generate_initial_system_message_button = gr.Button(
|
307 |
+
value="Generate",
|
308 |
+
variant="secondary"
|
309 |
+
)
|
310 |
|
311 |
+
with gr.Group():
|
312 |
+
acceptance_criteria_input = gr.Textbox(
|
313 |
+
label="Acceptance Criteria (Compared with Expected Output [EO])",
|
314 |
+
show_copy_button=True
|
315 |
+
)
|
316 |
+
generate_acceptance_criteria_button = gr.Button(
|
317 |
+
value="Generate",
|
318 |
+
variant="secondary"
|
319 |
)
|
|
|
|
|
|
|
|
|
320 |
|
321 |
+
recursion_limit_input = gr.Number(
|
322 |
+
label="Recursion Limit",
|
323 |
+
value=config.recursion_limit,
|
324 |
+
precision=0,
|
325 |
+
minimum=1,
|
326 |
+
maximum=config.recursion_limit_max,
|
327 |
+
step=1
|
328 |
+
)
|
329 |
+
max_output_age = gr.Number(
|
330 |
+
label="Max Output Age",
|
331 |
+
value=config.max_output_age,
|
332 |
+
precision=0,
|
333 |
+
minimum=1,
|
334 |
+
maximum=config.max_output_age_max,
|
335 |
+
step=1
|
336 |
+
)
|
337 |
+
prompt_template_group = gr.Dropdown(
|
338 |
+
label="Prompt Template Group",
|
339 |
+
choices=list(config.prompt_templates.keys()),
|
340 |
+
value=list(config.prompt_templates.keys())[0]
|
341 |
+
)
|
342 |
+
aggressive_exploration = gr.Checkbox(
|
343 |
+
label="Aggressive Exploration",
|
344 |
+
value=config.aggressive_exploration
|
345 |
+
)
|
346 |
+
with gr.Row():
|
347 |
+
with gr.Tabs() as llm_tabs:
|
348 |
+
with gr.Tab('Simple') as simple_llm_tab:
|
349 |
+
simple_model_name_input = gr.Dropdown(
|
350 |
+
label="Model Name",
|
351 |
+
choices=config.llms.keys(),
|
352 |
+
value=list(config.llms.keys())[0],
|
353 |
+
)
|
354 |
+
with gr.Tab('Advanced') as advanced_llm_tab:
|
355 |
+
advanced_optimizer_model_name_input = gr.Dropdown(
|
356 |
+
label="Optimizer Model Name",
|
357 |
+
choices=config.llms.keys(),
|
358 |
+
value=list(config.llms.keys())[0],
|
359 |
+
)
|
360 |
+
advanced_executor_model_name_input = gr.Dropdown(
|
361 |
+
label="Executor Model Name",
|
362 |
+
choices=config.llms.keys(),
|
363 |
+
value=list(config.llms.keys())[0],
|
364 |
+
)
|
365 |
+
with gr.Tab('Expert') as expert_llm_tab:
|
366 |
+
with gr.Row():
|
367 |
+
expert_prompt_initial_developer_model_name_input = gr.Dropdown(
|
368 |
+
label="Initial Developer Model Name",
|
369 |
+
choices=config.llms.keys(),
|
370 |
+
value=list(config.llms.keys())[0],
|
371 |
+
)
|
372 |
+
expert_prompt_initial_developer_temperature_input = gr.Number(
|
373 |
+
label="Initial Developer Temperature", value=0.1,
|
374 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
375 |
+
interactive=True)
|
376 |
+
|
377 |
+
with gr.Row():
|
378 |
+
expert_prompt_acceptance_criteria_model_name_input = gr.Dropdown(
|
379 |
+
label="Acceptance Criteria Model Name",
|
380 |
+
choices=config.llms.keys(),
|
381 |
+
value=list(config.llms.keys())[0],
|
382 |
+
)
|
383 |
+
expert_prompt_acceptance_criteria_temperature_input = gr.Number(
|
384 |
+
label="Acceptance Criteria Temperature", value=0.1,
|
385 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
386 |
+
interactive=True)
|
387 |
+
|
388 |
+
with gr.Row():
|
389 |
+
expert_prompt_developer_model_name_input = gr.Dropdown(
|
390 |
+
label="Developer Model Name",
|
391 |
+
choices=config.llms.keys(),
|
392 |
+
value=list(config.llms.keys())[0],
|
393 |
+
)
|
394 |
+
expert_prompt_developer_temperature_input = gr.Number(
|
395 |
+
label="Developer Temperature", value=0.1,
|
396 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
397 |
+
interactive=True)
|
398 |
+
|
399 |
+
with gr.Row():
|
400 |
+
expert_prompt_executor_model_name_input = gr.Dropdown(
|
401 |
+
label="Executor Model Name",
|
402 |
+
choices=config.llms.keys(),
|
403 |
+
value=list(config.llms.keys())[0],
|
404 |
+
)
|
405 |
+
expert_prompt_executor_temperature_input = gr.Number(
|
406 |
+
label="Executor Temperature", value=0.1,
|
407 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
408 |
+
interactive=True)
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
expert_output_history_analyzer_model_name_input = gr.Dropdown(
|
412 |
+
label="History Analyzer Model Name",
|
413 |
+
choices=config.llms.keys(),
|
414 |
+
value=list(config.llms.keys())[0],
|
415 |
+
)
|
416 |
+
expert_output_history_analyzer_temperature_input = gr.Number(
|
417 |
+
label="History Analyzer Temperature", value=0.1,
|
418 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
419 |
+
interactive=True)
|
420 |
+
|
421 |
+
with gr.Row():
|
422 |
+
expert_prompt_analyzer_model_name_input = gr.Dropdown(
|
423 |
+
label="Analyzer Model Name",
|
424 |
+
choices=config.llms.keys(),
|
425 |
+
value=list(config.llms.keys())[0],
|
426 |
+
)
|
427 |
+
expert_prompt_analyzer_temperature_input = gr.Number(
|
428 |
+
label="Analyzer Temperature", value=0.1,
|
429 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
430 |
+
interactive=True)
|
431 |
+
|
432 |
+
with gr.Row():
|
433 |
+
expert_prompt_suggester_model_name_input = gr.Dropdown(
|
434 |
+
label="Suggester Model Name",
|
435 |
+
choices=config.llms.keys(),
|
436 |
+
value=list(config.llms.keys())[0],
|
437 |
+
)
|
438 |
+
expert_prompt_suggester_temperature_input = gr.Number(
|
439 |
+
label="Suggester Temperature", value=0.1,
|
440 |
+
precision=1, minimum=0, maximum=1, step=0.1,
|
441 |
+
interactive=True)
|
442 |
+
|
443 |
+
with gr.Column():
|
444 |
+
with gr.Group():
|
445 |
+
system_message_output = gr.Textbox(
|
446 |
+
label="System Message", show_copy_button=True)
|
447 |
with gr.Row():
|
448 |
+
evaluate_system_message_button = gr.Button(
|
449 |
+
value="Evaluate", variant="secondary")
|
450 |
+
copy_to_initial_system_message_button = gr.Button(
|
451 |
+
value="Copy to Initial System Message", variant="secondary")
|
452 |
+
output_output = gr.Textbox(
|
453 |
+
label="Output", show_copy_button=True)
|
454 |
+
analysis_output = gr.Textbox(
|
455 |
+
label="Analysis", show_copy_button=True)
|
456 |
+
flag_button = gr.Button(
|
457 |
+
value="Flag", variant="secondary", visible=config.allow_flagging)
|
458 |
+
with gr.Accordion("Details", open=False, visible=config.verbose):
|
459 |
+
logs_chatbot = gr.Chatbot(
|
460 |
+
label='Messages', show_copy_button=True, layout='bubble',
|
461 |
+
bubble_full_width=False, render_markdown=False
|
462 |
+
)
|
463 |
+
clear_logs_button = gr.ClearButton(
|
464 |
+
[logs_chatbot], value='Clear Logs')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
+
# Load examples
|
467 |
+
examples = gr.Examples(config.examples_path, inputs=[
|
468 |
+
selected_example_input,
|
469 |
+
selected_example_output,
|
470 |
+
acceptance_criteria_input,
|
471 |
+
initial_system_message_input,
|
472 |
+
recursion_limit_input,
|
473 |
+
simple_model_name_input
|
474 |
+
])
|
475 |
+
|
476 |
+
model_states = {
|
477 |
+
# None | str
|
478 |
+
"initial_developer": gr.State(value=simple_model_name_input.value),
|
479 |
+
# None | str
|
480 |
+
"acceptance_criteria": gr.State(value=simple_model_name_input.value),
|
481 |
+
# None | str
|
482 |
+
"developer": gr.State(value=simple_model_name_input.value),
|
483 |
+
# None | str
|
484 |
+
"executor": gr.State(value=simple_model_name_input.value),
|
485 |
+
# None | str
|
486 |
+
"history_analyzer": gr.State(value=simple_model_name_input.value),
|
487 |
+
# None | str
|
488 |
+
"analyzer": gr.State(value=simple_model_name_input.value),
|
489 |
+
# None | str
|
490 |
+
"suggester": gr.State(value=simple_model_name_input.value)
|
491 |
+
}
|
492 |
+
|
493 |
+
config_state = gr.State(value=config)
|
494 |
+
|
495 |
+
# set up event handlers for the scope tab
|
496 |
+
|
497 |
+
json_file_object.change(
|
498 |
+
fn=import_json_data,
|
499 |
+
inputs=[json_file_object, input_dataframe],
|
500 |
+
outputs=[input_dataframe],
|
501 |
+
)
|
502 |
+
|
503 |
+
export_button.click(
|
504 |
+
fn=export_json_data,
|
505 |
+
inputs=[input_dataframe],
|
506 |
+
outputs=[json_file_object],
|
507 |
+
)
|
508 |
+
|
509 |
+
submit_button.click(
|
510 |
+
fn=process_json_data,
|
511 |
+
inputs=[
|
512 |
+
input_dataframe,
|
513 |
+
model_name,
|
514 |
+
generating_batch_size,
|
515 |
+
temperature,
|
516 |
+
],
|
517 |
+
outputs=[
|
518 |
+
description_output,
|
519 |
+
suggestions_output,
|
520 |
+
examples_directly_output_dataframe,
|
521 |
+
input_analysis_output,
|
522 |
+
example_briefs_output,
|
523 |
+
examples_from_briefs_output_dataframe,
|
524 |
+
examples_output_dataframe,
|
525 |
+
],
|
526 |
+
)
|
527 |
+
|
528 |
+
generate_description_button.click(
|
529 |
+
fn=generate_description,
|
530 |
+
inputs=[input_dataframe, model_name, temperature],
|
531 |
+
outputs=[description_output, suggestions_output],
|
532 |
+
)
|
533 |
+
|
534 |
+
generate_examples_directly_button.click(
|
535 |
+
fn=generate_examples_from_description,
|
536 |
+
inputs=[
|
537 |
+
description_output,
|
538 |
+
input_dataframe,
|
539 |
+
generating_batch_size,
|
540 |
+
model_name,
|
541 |
+
temperature,
|
542 |
+
],
|
543 |
+
outputs=[examples_directly_output_dataframe],
|
544 |
+
)
|
545 |
+
|
546 |
+
analyze_input_button.click(
|
547 |
+
fn=analyze_input_data,
|
548 |
+
inputs=[description_output, model_name, temperature],
|
549 |
+
outputs=[input_analysis_output],
|
550 |
+
)
|
551 |
+
|
552 |
+
generate_briefs_button.click(
|
553 |
+
fn=generate_example_briefs,
|
554 |
+
inputs=[
|
555 |
+
description_output,
|
556 |
+
input_analysis_output,
|
557 |
+
generating_batch_size,
|
558 |
+
model_name,
|
559 |
+
temperature,
|
560 |
+
],
|
561 |
+
outputs=[example_briefs_output],
|
562 |
+
)
|
563 |
+
|
564 |
+
generate_examples_from_briefs_button.click(
|
565 |
+
fn=generate_examples_using_briefs,
|
566 |
+
inputs=[
|
567 |
+
description_output,
|
568 |
+
example_briefs_output,
|
569 |
+
input_dataframe,
|
570 |
+
generating_batch_size,
|
571 |
+
model_name,
|
572 |
+
temperature,
|
573 |
+
],
|
574 |
+
outputs=[examples_from_briefs_output_dataframe],
|
575 |
+
)
|
576 |
+
|
577 |
+
input_dataframe.select(
|
578 |
+
fn=format_selected_input_example_dataframe,
|
579 |
+
inputs=[input_dataframe],
|
580 |
+
outputs=[
|
581 |
+
selected_group_mode,
|
582 |
+
selected_group_index,
|
583 |
+
selected_group_input,
|
584 |
+
selected_group_output,
|
585 |
+
],
|
586 |
+
)
|
587 |
+
|
588 |
+
examples_directly_output_dataframe.select(
|
589 |
+
fn=format_selected_example,
|
590 |
+
inputs=[examples_directly_output_dataframe],
|
591 |
+
outputs=[
|
592 |
+
selected_group_mode,
|
593 |
+
selected_group_index,
|
594 |
+
selected_group_input,
|
595 |
+
selected_group_output,
|
596 |
+
],
|
597 |
+
)
|
598 |
+
|
599 |
+
examples_from_briefs_output_dataframe.select(
|
600 |
+
fn=format_selected_example,
|
601 |
+
inputs=[examples_from_briefs_output_dataframe],
|
602 |
+
outputs=[
|
603 |
+
selected_group_mode,
|
604 |
+
selected_group_index,
|
605 |
+
selected_group_input,
|
606 |
+
selected_group_output,
|
607 |
+
],
|
608 |
+
)
|
609 |
+
|
610 |
+
examples_output_dataframe.select(
|
611 |
+
fn=format_selected_example,
|
612 |
+
inputs=[examples_output_dataframe],
|
613 |
+
outputs=[
|
614 |
+
selected_group_mode,
|
615 |
+
selected_group_index,
|
616 |
+
selected_group_input,
|
617 |
+
selected_group_output,
|
618 |
+
],
|
619 |
+
)
|
620 |
+
|
621 |
+
input_dataframe.change(
|
622 |
+
fn=input_dataframe_change,
|
623 |
+
inputs=[
|
624 |
+
input_dataframe,
|
625 |
+
selected_group_mode,
|
626 |
+
selected_group_index,
|
627 |
+
selected_group_input,
|
628 |
+
selected_group_output,
|
629 |
+
],
|
630 |
+
outputs=[
|
631 |
+
selected_group_mode,
|
632 |
+
selected_group_index,
|
633 |
+
selected_group_input,
|
634 |
+
selected_group_output,
|
635 |
+
],
|
636 |
+
)
|
637 |
+
|
638 |
+
generate_suggestions_button.click(
|
639 |
+
fn=generate_suggestions,
|
640 |
+
inputs=[description_output, input_dataframe, model_name, temperature],
|
641 |
+
outputs=[suggestions_output],
|
642 |
+
)
|
643 |
+
|
644 |
+
apply_suggestions_button.click(
|
645 |
+
fn=apply_suggestions,
|
646 |
+
inputs=[description_output, suggestions_output,
|
647 |
+
input_dataframe, model_name, temperature],
|
648 |
+
outputs=[description_output],
|
649 |
+
)
|
650 |
+
|
651 |
+
# set up event handlers for the prompt tab
|
652 |
simple_llm_tab.select(
|
653 |
on_model_tab_select,
|
654 |
[
|
|
|
724 |
|
725 |
generate_acceptance_criteria_button.click(
|
726 |
generate_acceptance_criteria,
|
727 |
+
inputs=[config_state, selected_example_input, selected_example_output,
|
728 |
model_states["acceptance_criteria"],
|
729 |
prompt_template_group],
|
730 |
outputs=[acceptance_criteria_input, logs_chatbot]
|
731 |
)
|
732 |
generate_initial_system_message_button.click(
|
733 |
generate_initial_system_message,
|
734 |
+
inputs=[config_state, selected_example_input, selected_example_output,
|
735 |
model_states["initial_developer"],
|
736 |
prompt_template_group],
|
737 |
outputs=[initial_system_message_input, logs_chatbot]
|
|
|
742 |
inputs=[
|
743 |
config_state,
|
744 |
initial_system_message_input,
|
745 |
+
selected_example_input,
|
746 |
model_states["executor"]
|
747 |
],
|
748 |
outputs=[output_output]
|
|
|
752 |
inputs=[
|
753 |
config_state,
|
754 |
system_message_output,
|
755 |
+
selected_example_input,
|
756 |
model_states["executor"]
|
757 |
],
|
758 |
outputs=[output_output]
|
|
|
763 |
outputs=[initial_system_message_input]
|
764 |
)
|
765 |
|
766 |
+
prompt_clear_button.add([selected_example_input, selected_example_output,
|
767 |
+
acceptance_criteria_input, initial_system_message_input,
|
768 |
+
system_message_output, output_output,
|
769 |
+
analysis_output, logs_chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
770 |
|
771 |
+
prompt_submit_button.click(
|
772 |
process_message_with_models,
|
773 |
inputs=[
|
774 |
config_state,
|
775 |
+
selected_example_input,
|
776 |
+
selected_example_output,
|
777 |
acceptance_criteria_input,
|
778 |
initial_system_message_input,
|
779 |
recursion_limit_input,
|
|
|
798 |
)
|
799 |
|
800 |
flagging_inputs = [
|
801 |
+
selected_example_input,
|
802 |
+
selected_example_output,
|
803 |
acceptance_criteria_input,
|
804 |
initial_system_message_input
|
805 |
]
|
app/gradio_meta_prompt_utils.py
CHANGED
@@ -5,6 +5,9 @@ import logging
|
|
5 |
from pathlib import Path
|
6 |
import csv
|
7 |
import io
|
|
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
from gradio import CSVLogger, utils
|
@@ -18,7 +21,7 @@ from pythonjsonlogger import jsonlogger
|
|
18 |
|
19 |
from app.config import MetaPromptConfig, RoleMessage
|
20 |
from meta_prompt import *
|
21 |
-
|
22 |
|
23 |
def prompt_templates_confz2langchain(
|
24 |
prompt_templates: Dict[str, Dict[str, List[RoleMessage]]]
|
@@ -502,3 +505,234 @@ def initialize_llm(config: MetaPromptConfig, model_name: str, model_config: Opti
|
|
502 |
|
503 |
class FileConfig(BaseConfig):
|
504 |
config_file: str = 'config.yml' # default path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from pathlib import Path
|
6 |
import csv
|
7 |
import io
|
8 |
+
import tempfile
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
|
12 |
import gradio as gr
|
13 |
from gradio import CSVLogger, utils
|
|
|
21 |
|
22 |
from app.config import MetaPromptConfig, RoleMessage
|
23 |
from meta_prompt import *
|
24 |
+
from meta_prompt.sample_generator import TaskDescriptionGenerator
|
25 |
|
26 |
def prompt_templates_confz2langchain(
|
27 |
prompt_templates: Dict[str, Dict[str, List[RoleMessage]]]
|
|
|
505 |
|
506 |
class FileConfig(BaseConfig):
|
507 |
config_file: str = 'config.yml' # default path
|
508 |
+
|
509 |
+
|
510 |
+
def convert_examples_to_json(examples):
|
511 |
+
pd_examples = pd.DataFrame(examples)
|
512 |
+
pd_examples.columns = pd_examples.columns.str.lower()
|
513 |
+
return pd_examples.to_json(orient="records")
|
514 |
+
|
515 |
+
def process_json_data(
|
516 |
+
examples, model_name, generating_batch_size, temperature
|
517 |
+
):
|
518 |
+
try:
|
519 |
+
# Convert the gradio dataframe into a JSON array
|
520 |
+
input_json = convert_examples_to_json(examples)
|
521 |
+
|
522 |
+
model = ChatOpenAI(
|
523 |
+
model=model_name, temperature=temperature, max_retries=3
|
524 |
+
)
|
525 |
+
generator = TaskDescriptionGenerator(model)
|
526 |
+
result = generator.process(input_json, generating_batch_size)
|
527 |
+
|
528 |
+
description = result["description"]
|
529 |
+
examples_directly = [
|
530 |
+
[example["input"], example["output"]]
|
531 |
+
for example in result["examples_directly"]["examples"]
|
532 |
+
]
|
533 |
+
input_analysis = result["examples_from_briefs"]["input_analysis"]
|
534 |
+
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
|
535 |
+
examples_from_briefs = [
|
536 |
+
[example["input"], example["output"]]
|
537 |
+
for example in result["examples_from_briefs"]["examples"]
|
538 |
+
]
|
539 |
+
examples = [
|
540 |
+
[example["input"], example["output"]]
|
541 |
+
for example in result["additional_examples"]
|
542 |
+
]
|
543 |
+
suggestions = result.get("suggestions", [])
|
544 |
+
return (
|
545 |
+
description,
|
546 |
+
gr.update(choices=suggestions, value=[]),
|
547 |
+
examples_directly,
|
548 |
+
input_analysis,
|
549 |
+
new_example_briefs,
|
550 |
+
examples_from_briefs,
|
551 |
+
examples,
|
552 |
+
)
|
553 |
+
except Exception as e:
|
554 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
555 |
+
|
556 |
+
def generate_description(examples, model_name, temperature):
|
557 |
+
try:
|
558 |
+
input_json = convert_examples_to_json(examples)
|
559 |
+
|
560 |
+
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
561 |
+
generator = TaskDescriptionGenerator(model)
|
562 |
+
result = generator.generate_description(input_json)
|
563 |
+
description = result["description"]
|
564 |
+
suggestions = result["suggestions"]
|
565 |
+
return description, gr.update(choices=suggestions, value=[])
|
566 |
+
except Exception as e:
|
567 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
568 |
+
|
569 |
+
def analyze_input_data(description, model_name, temperature):
|
570 |
+
try:
|
571 |
+
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
572 |
+
generator = TaskDescriptionGenerator(model)
|
573 |
+
input_analysis = generator.analyze_input(description)
|
574 |
+
return input_analysis
|
575 |
+
except Exception as e:
|
576 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
577 |
+
|
578 |
+
def generate_example_briefs(
|
579 |
+
description, input_analysis, generating_batch_size, model_name, temperature
|
580 |
+
):
|
581 |
+
try:
|
582 |
+
model = ChatOpenAI(
|
583 |
+
model=model_name, temperature=temperature, max_retries=3
|
584 |
+
)
|
585 |
+
generator = TaskDescriptionGenerator(model)
|
586 |
+
briefs = generator.generate_briefs(
|
587 |
+
description, input_analysis, generating_batch_size
|
588 |
+
)
|
589 |
+
return briefs
|
590 |
+
except Exception as e:
|
591 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
592 |
+
|
593 |
+
|
594 |
+
def generate_examples_using_briefs(
|
595 |
+
description, new_example_briefs, examples, generating_batch_size, model_name, temperature
|
596 |
+
):
|
597 |
+
try:
|
598 |
+
input_json = convert_examples_to_json(examples)
|
599 |
+
model = ChatOpenAI(
|
600 |
+
model=model_name, temperature=temperature, max_retries=3
|
601 |
+
)
|
602 |
+
generator = TaskDescriptionGenerator(model)
|
603 |
+
result = generator.generate_examples_from_briefs(
|
604 |
+
description, new_example_briefs, input_json, generating_batch_size
|
605 |
+
)
|
606 |
+
examples = [
|
607 |
+
[example["input"], example["output"]]
|
608 |
+
for example in result["examples"]
|
609 |
+
]
|
610 |
+
return examples
|
611 |
+
except Exception as e:
|
612 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
613 |
+
|
614 |
+
|
615 |
+
def generate_examples_from_description(
|
616 |
+
description, raw_example, generating_batch_size, model_name, temperature
|
617 |
+
):
|
618 |
+
try:
|
619 |
+
input_json = convert_examples_to_json(raw_example)
|
620 |
+
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
621 |
+
generator = TaskDescriptionGenerator(model)
|
622 |
+
result = generator.generate_examples_directly(
|
623 |
+
description, input_json, generating_batch_size
|
624 |
+
)
|
625 |
+
examples = [
|
626 |
+
[example["input"], example["output"]] for example in result["examples"]
|
627 |
+
]
|
628 |
+
return examples
|
629 |
+
except Exception as e:
|
630 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
631 |
+
|
632 |
+
def format_selected_input_example_dataframe(evt: gr.SelectData, examples):
|
633 |
+
if evt.index[0] < len(examples):
|
634 |
+
selected_example = examples.iloc[evt.index[0]]
|
635 |
+
return "update", evt.index[0]+1, selected_example.iloc[0], selected_example.iloc[1]
|
636 |
+
return None, None, None, None
|
637 |
+
|
638 |
+
def format_selected_example(evt: gr.SelectData, examples):
|
639 |
+
if evt.index[0] < len(examples):
|
640 |
+
selected_example = examples.iloc[evt.index[0]]
|
641 |
+
return (
|
642 |
+
"append",
|
643 |
+
None,
|
644 |
+
selected_example.iloc[0],
|
645 |
+
selected_example.iloc[1],
|
646 |
+
)
|
647 |
+
return None, None, None, None
|
648 |
+
|
649 |
+
def import_json_data(file, input_dataframe):
|
650 |
+
if file is not None:
|
651 |
+
df = pd.read_json(file.name)
|
652 |
+
# Uppercase the first letter of each column name
|
653 |
+
df.columns = df.columns.str.title()
|
654 |
+
return df
|
655 |
+
return input_dataframe
|
656 |
+
|
657 |
+
def export_json_data(dataframe):
|
658 |
+
if dataframe is not None and not dataframe.empty:
|
659 |
+
# Copy the dataframe and lowercase the column names
|
660 |
+
df_copy = dataframe.copy()
|
661 |
+
df_copy.columns = df_copy.columns.str.lower()
|
662 |
+
|
663 |
+
json_str = df_copy.to_json(orient="records", indent=2)
|
664 |
+
|
665 |
+
# create a temporary file with the json string
|
666 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as temp_file:
|
667 |
+
temp_file.write(json_str.encode("utf-8"))
|
668 |
+
temp_file_path = temp_file.name
|
669 |
+
|
670 |
+
return temp_file_path
|
671 |
+
return None
|
672 |
+
|
673 |
+
|
674 |
+
def append_example_to_input_dataframe(
|
675 |
+
new_example_input, new_example_output, input_dataframe
|
676 |
+
):
|
677 |
+
try:
|
678 |
+
new_row = pd.DataFrame(
|
679 |
+
[[new_example_input, new_example_output]], columns=["Input", "Output"]
|
680 |
+
)
|
681 |
+
updated_df = pd.concat([input_dataframe, new_row], ignore_index=True)
|
682 |
+
return updated_df, None, None, None, None
|
683 |
+
except KeyError:
|
684 |
+
raise gr.Error("Invalid input or output")
|
685 |
+
|
686 |
+
|
687 |
+
def delete_selected_dataframe_row(row_index, input_dataframe):
|
688 |
+
if row_index is not None and row_index > 0:
|
689 |
+
input_dataframe = input_dataframe.drop(index=row_index - 1).reset_index(
|
690 |
+
drop=True
|
691 |
+
)
|
692 |
+
return input_dataframe, None, None, None, None
|
693 |
+
return input_dataframe, None, None, None, None
|
694 |
+
|
695 |
+
|
696 |
+
def update_selected_dataframe_row(
|
697 |
+
selected_example_input, selected_example_output, selected_row_index, input_dataframe
|
698 |
+
):
|
699 |
+
if selected_row_index is not None and selected_row_index > 0:
|
700 |
+
input_dataframe.iloc[selected_row_index - 1] = [
|
701 |
+
selected_example_input,
|
702 |
+
selected_example_output,
|
703 |
+
]
|
704 |
+
return input_dataframe, None, None, None, None
|
705 |
+
return input_dataframe, None, None, None, None
|
706 |
+
|
707 |
+
|
708 |
+
def input_dataframe_change(
|
709 |
+
input_dataframe, selected_group_mode, selected_group_index, selected_group_input, selected_group_output
|
710 |
+
):
|
711 |
+
if len(input_dataframe) <= 1:
|
712 |
+
return None, None, None, None
|
713 |
+
return (
|
714 |
+
selected_group_mode,
|
715 |
+
selected_group_index,
|
716 |
+
selected_group_input,
|
717 |
+
selected_group_output,
|
718 |
+
)
|
719 |
+
|
720 |
+
def generate_suggestions(description, examples, model_name, temperature):
|
721 |
+
try:
|
722 |
+
input_json = convert_examples_to_json(examples)
|
723 |
+
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
724 |
+
generator = TaskDescriptionGenerator(model)
|
725 |
+
result = generator.generate_suggestions(input_json, description)
|
726 |
+
return gr.update(choices=result["suggestions"])
|
727 |
+
except Exception as e:
|
728 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
729 |
+
|
730 |
+
def apply_suggestions(description, suggestions, examples, model_name, temperature):
|
731 |
+
try:
|
732 |
+
input_json = convert_examples_to_json(examples)
|
733 |
+
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
734 |
+
generator = TaskDescriptionGenerator(model)
|
735 |
+
result = generator.update_description(input_json, description, suggestions)
|
736 |
+
return result["description"]
|
737 |
+
except Exception as e:
|
738 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
app/gradio_sample_generator.py
CHANGED
@@ -1,239 +1,6 @@
|
|
1 |
-
import json
|
2 |
-
import tempfile
|
3 |
import gradio as gr
|
4 |
-
import pandas as pd
|
5 |
-
from langchain_openai import ChatOpenAI
|
6 |
-
from meta_prompt.sample_generator import TaskDescriptionGenerator
|
7 |
-
|
8 |
-
def convert_examples_to_json(examples):
|
9 |
-
pd_examples = pd.DataFrame(examples)
|
10 |
-
pd_examples.columns = pd_examples.columns.str.lower()
|
11 |
-
return pd_examples.to_json(orient="records")
|
12 |
-
|
13 |
-
def process_json_data(
|
14 |
-
examples, model_name, generating_batch_size, temperature
|
15 |
-
):
|
16 |
-
try:
|
17 |
-
# Convert the gradio dataframe into a JSON array
|
18 |
-
input_json = convert_examples_to_json(examples)
|
19 |
-
|
20 |
-
model = ChatOpenAI(
|
21 |
-
model=model_name, temperature=temperature, max_retries=3
|
22 |
-
)
|
23 |
-
generator = TaskDescriptionGenerator(model)
|
24 |
-
result = generator.process(input_json, generating_batch_size)
|
25 |
-
|
26 |
-
description = result["description"]
|
27 |
-
examples_directly = [
|
28 |
-
[example["input"], example["output"]]
|
29 |
-
for example in result["examples_directly"]["examples"]
|
30 |
-
]
|
31 |
-
input_analysis = result["examples_from_briefs"]["input_analysis"]
|
32 |
-
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"]
|
33 |
-
examples_from_briefs = [
|
34 |
-
[example["input"], example["output"]]
|
35 |
-
for example in result["examples_from_briefs"]["examples"]
|
36 |
-
]
|
37 |
-
examples = [
|
38 |
-
[example["input"], example["output"]]
|
39 |
-
for example in result["additional_examples"]
|
40 |
-
]
|
41 |
-
suggestions = result.get("suggestions", [])
|
42 |
-
return (
|
43 |
-
description,
|
44 |
-
gr.update(choices=suggestions, value=[]),
|
45 |
-
examples_directly,
|
46 |
-
input_analysis,
|
47 |
-
new_example_briefs,
|
48 |
-
examples_from_briefs,
|
49 |
-
examples,
|
50 |
-
)
|
51 |
-
except Exception as e:
|
52 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
53 |
-
|
54 |
-
def generate_description(examples, model_name, temperature):
|
55 |
-
try:
|
56 |
-
input_json = convert_examples_to_json(examples)
|
57 |
-
|
58 |
-
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
59 |
-
generator = TaskDescriptionGenerator(model)
|
60 |
-
result = generator.generate_description(input_json)
|
61 |
-
description = result["description"]
|
62 |
-
suggestions = result["suggestions"]
|
63 |
-
return description, gr.update(choices=suggestions, value=[])
|
64 |
-
except Exception as e:
|
65 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
66 |
-
|
67 |
-
def analyze_input_data(description, model_name, temperature):
|
68 |
-
try:
|
69 |
-
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
70 |
-
generator = TaskDescriptionGenerator(model)
|
71 |
-
input_analysis = generator.analyze_input(description)
|
72 |
-
return input_analysis
|
73 |
-
except Exception as e:
|
74 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
75 |
-
|
76 |
-
def generate_example_briefs(
|
77 |
-
description, input_analysis, generating_batch_size, model_name, temperature
|
78 |
-
):
|
79 |
-
try:
|
80 |
-
model = ChatOpenAI(
|
81 |
-
model=model_name, temperature=temperature, max_retries=3
|
82 |
-
)
|
83 |
-
generator = TaskDescriptionGenerator(model)
|
84 |
-
briefs = generator.generate_briefs(
|
85 |
-
description, input_analysis, generating_batch_size
|
86 |
-
)
|
87 |
-
return briefs
|
88 |
-
except Exception as e:
|
89 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
90 |
-
|
91 |
-
|
92 |
-
def generate_examples_using_briefs(
|
93 |
-
description, new_example_briefs, examples, generating_batch_size, model_name, temperature
|
94 |
-
):
|
95 |
-
try:
|
96 |
-
input_json = convert_examples_to_json(examples)
|
97 |
-
model = ChatOpenAI(
|
98 |
-
model=model_name, temperature=temperature, max_retries=3
|
99 |
-
)
|
100 |
-
generator = TaskDescriptionGenerator(model)
|
101 |
-
result = generator.generate_examples_from_briefs(
|
102 |
-
description, new_example_briefs, input_json, generating_batch_size
|
103 |
-
)
|
104 |
-
examples = [
|
105 |
-
[example["input"], example["output"]]
|
106 |
-
for example in result["examples"]
|
107 |
-
]
|
108 |
-
return examples
|
109 |
-
except Exception as e:
|
110 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
111 |
-
|
112 |
-
|
113 |
-
def generate_examples_from_description(
|
114 |
-
description, raw_example, generating_batch_size, model_name, temperature
|
115 |
-
):
|
116 |
-
try:
|
117 |
-
input_json = convert_examples_to_json(raw_example)
|
118 |
-
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
119 |
-
generator = TaskDescriptionGenerator(model)
|
120 |
-
result = generator.generate_examples_directly(
|
121 |
-
description, input_json, generating_batch_size
|
122 |
-
)
|
123 |
-
examples = [
|
124 |
-
[example["input"], example["output"]] for example in result["examples"]
|
125 |
-
]
|
126 |
-
return examples
|
127 |
-
except Exception as e:
|
128 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
129 |
-
|
130 |
-
def format_selected_input_example_dataframe(evt: gr.SelectData, examples):
|
131 |
-
if evt.index[0] < len(examples):
|
132 |
-
selected_example = examples.iloc[evt.index[0]]
|
133 |
-
return "update", evt.index[0]+1, selected_example.iloc[0], selected_example.iloc[1]
|
134 |
-
return None, None, None, None
|
135 |
-
|
136 |
-
def format_selected_example(evt: gr.SelectData, examples):
|
137 |
-
if evt.index[0] < len(examples):
|
138 |
-
selected_example = examples.iloc[evt.index[0]]
|
139 |
-
return (
|
140 |
-
"append",
|
141 |
-
None,
|
142 |
-
selected_example.iloc[0],
|
143 |
-
selected_example.iloc[1],
|
144 |
-
)
|
145 |
-
return None, None, None, None
|
146 |
-
|
147 |
-
def import_json_data(file, input_dataframe):
|
148 |
-
if file is not None:
|
149 |
-
df = pd.read_json(file.name)
|
150 |
-
# Uppercase the first letter of each column name
|
151 |
-
df.columns = df.columns.str.title()
|
152 |
-
return df
|
153 |
-
return input_dataframe
|
154 |
-
|
155 |
-
def export_json_data(dataframe):
|
156 |
-
if dataframe is not None and not dataframe.empty:
|
157 |
-
# Copy the dataframe and lowercase the column names
|
158 |
-
df_copy = dataframe.copy()
|
159 |
-
df_copy.columns = df_copy.columns.str.lower()
|
160 |
-
|
161 |
-
json_str = df_copy.to_json(orient="records", indent=2)
|
162 |
-
|
163 |
-
# create a temporary file with the json string
|
164 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as temp_file:
|
165 |
-
temp_file.write(json_str.encode("utf-8"))
|
166 |
-
temp_file_path = temp_file.name
|
167 |
-
|
168 |
-
return temp_file_path
|
169 |
-
return None
|
170 |
-
|
171 |
-
|
172 |
-
def append_example_to_input_dataframe(
|
173 |
-
new_example_input, new_example_output, input_dataframe
|
174 |
-
):
|
175 |
-
try:
|
176 |
-
new_row = pd.DataFrame(
|
177 |
-
[[new_example_input, new_example_output]], columns=["Input", "Output"]
|
178 |
-
)
|
179 |
-
updated_df = pd.concat([input_dataframe, new_row], ignore_index=True)
|
180 |
-
return updated_df, None, None, None, None
|
181 |
-
except KeyError:
|
182 |
-
raise gr.Error("Invalid input or output")
|
183 |
-
|
184 |
-
|
185 |
-
def delete_selected_dataframe_row(row_index, input_dataframe):
|
186 |
-
if row_index is not None and row_index > 0:
|
187 |
-
input_dataframe = input_dataframe.drop(index=row_index - 1).reset_index(
|
188 |
-
drop=True
|
189 |
-
)
|
190 |
-
return input_dataframe, None, None, None, None
|
191 |
-
return input_dataframe, None, None, None, None
|
192 |
-
|
193 |
-
|
194 |
-
def update_selected_dataframe_row(
|
195 |
-
selected_example_input, selected_example_output, selected_row_index, input_dataframe
|
196 |
-
):
|
197 |
-
if selected_row_index is not None and selected_row_index > 0:
|
198 |
-
input_dataframe.iloc[selected_row_index - 1] = [
|
199 |
-
selected_example_input,
|
200 |
-
selected_example_output,
|
201 |
-
]
|
202 |
-
return input_dataframe, None, None, None, None
|
203 |
-
return input_dataframe, None, None, None, None
|
204 |
-
|
205 |
-
|
206 |
-
def input_dataframe_change(
|
207 |
-
input_dataframe, selected_group_mode, selected_group_index, selected_group_input, selected_group_output
|
208 |
-
):
|
209 |
-
if len(input_dataframe) <= 1:
|
210 |
-
return None, None, None, None
|
211 |
-
return (
|
212 |
-
selected_group_mode,
|
213 |
-
selected_group_index,
|
214 |
-
selected_group_input,
|
215 |
-
selected_group_output,
|
216 |
-
)
|
217 |
|
218 |
-
|
219 |
-
try:
|
220 |
-
input_json = convert_examples_to_json(examples)
|
221 |
-
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
222 |
-
generator = TaskDescriptionGenerator(model)
|
223 |
-
result = generator.generate_suggestions(input_json, description)
|
224 |
-
return gr.update(choices=result["suggestions"])
|
225 |
-
except Exception as e:
|
226 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
227 |
-
|
228 |
-
def apply_suggestions(description, suggestions, examples, model_name, temperature):
|
229 |
-
try:
|
230 |
-
input_json = convert_examples_to_json(examples)
|
231 |
-
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)
|
232 |
-
generator = TaskDescriptionGenerator(model)
|
233 |
-
result = generator.update_description(input_json, description, suggestions)
|
234 |
-
return result["description"]
|
235 |
-
except Exception as e:
|
236 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
237 |
|
238 |
with gr.Blocks(title="Meta Prompt") as demo:
|
239 |
gr.Markdown("# Scope")
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from app.gradio_meta_prompt_utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
with gr.Blocks(title="Meta Prompt") as demo:
|
6 |
gr.Markdown("# Scope")
|