Spaces:
Running
Running
Update Python doc strs.
Browse files- meta_prompt/meta_prompt.py +210 -154
meta_prompt/meta_prompt.py
CHANGED
@@ -23,18 +23,18 @@ class AgentState(TypedDict):
|
|
23 |
Represents the state of an agent in a conversation.
|
24 |
|
25 |
Attributes:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
"""
|
39 |
max_output_age: Optional[int]
|
40 |
user_message: Optional[str]
|
@@ -80,41 +80,34 @@ class MetaPromptGraph:
|
|
80 |
"""
|
81 |
return META_PROMPT_NODES
|
82 |
|
83 |
-
def __init__(
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
"""
|
91 |
Initializes the MetaPromptGraph instance.
|
92 |
|
93 |
Args:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
Initializes the logger, sets the language models and prompt
|
104 |
-
templates for the graph nodes, and updates the prompt templates
|
105 |
-
with custom ones if provided.
|
106 |
"""
|
107 |
self.logger = logger or logging.getLogger(__name__)
|
108 |
if self.logger is not None:
|
109 |
-
if verbose
|
110 |
-
self.logger.setLevel(logging.DEBUG)
|
111 |
-
else:
|
112 |
-
self.logger.setLevel(logging.INFO)
|
113 |
|
114 |
if isinstance(llms, BaseLanguageModel):
|
115 |
-
|
116 |
-
self.llms: Dict[str, BaseLanguageModel] = {
|
117 |
-
node: llms for node in self.get_node_names()}
|
118 |
else:
|
119 |
self.llms: Dict[str, BaseLanguageModel] = llms
|
120 |
self.prompt_templates: Dict[str,
|
@@ -125,60 +118,82 @@ class MetaPromptGraph:
|
|
125 |
|
126 |
|
127 |
def _create_acceptance_criteria_workflow(self) -> StateGraph:
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
workflow = StateGraph(AgentState)
|
129 |
-
workflow.add_node(
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
workflow.add_edge(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, END)
|
135 |
workflow.set_entry_point(NODE_ACCEPTANCE_CRITERIA_DEVELOPER)
|
136 |
return workflow
|
137 |
|
138 |
|
139 |
def _create_prompt_initial_developer_workflow(self) -> StateGraph:
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
workflow = StateGraph(AgentState)
|
141 |
-
workflow.add_node(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
workflow.add_edge(NODE_PROMPT_INITIAL_DEVELOPER, END)
|
147 |
workflow.set_entry_point(NODE_PROMPT_INITIAL_DEVELOPER)
|
148 |
return workflow
|
149 |
|
150 |
|
151 |
def _create_workflow(self) -> StateGraph:
|
152 |
-
"""
|
153 |
-
|
154 |
-
Args:
|
155 |
-
including_initial_developer: Flag indicating whether to include the
|
156 |
-
initial developer node in the workflow.
|
157 |
|
158 |
Returns:
|
159 |
StateGraph: A state graph representing the workflow.
|
160 |
"""
|
|
|
161 |
workflow = StateGraph(AgentState)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
# Connect nodes
|
184 |
workflow.add_edge(NODE_PROMPT_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
@@ -195,7 +210,6 @@ class MetaPromptGraph:
|
|
195 |
END: END
|
196 |
}
|
197 |
)
|
198 |
-
|
199 |
workflow.add_conditional_edges(
|
200 |
NODE_PROMPT_ANALYZER,
|
201 |
lambda x: self._should_exit_on_acceptable_output(x),
|
@@ -205,26 +219,33 @@ class MetaPromptGraph:
|
|
205 |
}
|
206 |
)
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
|
|
225 |
workflow.add_edge(START, NODE_PROMPT_INITIAL_DEVELOPER)
|
226 |
workflow.add_edge(START, NODE_ACCEPTANCE_CRITERIA_DEVELOPER)
|
227 |
-
|
228 |
workflow.add_edge(NODE_PROMPT_INITIAL_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
229 |
workflow.add_edge(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
230 |
|
@@ -232,6 +253,14 @@ class MetaPromptGraph:
|
|
232 |
|
233 |
|
234 |
def run_acceptance_criteria_graph(self, state: AgentState) -> AgentState:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
self.logger.debug("Creating acceptance criteria workflow")
|
236 |
workflow = self._create_acceptance_criteria_workflow()
|
237 |
memory = MemorySaver()
|
@@ -241,9 +270,17 @@ class MetaPromptGraph:
|
|
241 |
output_state = graph.invoke(state, config)
|
242 |
self.logger.debug("Output state: %s", pprint.pformat(output_state))
|
243 |
return output_state
|
244 |
-
|
245 |
|
246 |
def run_prompt_initial_developer_graph(self, state: AgentState) -> AgentState:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
self.logger.debug("Creating prompt initial developer workflow")
|
248 |
workflow = self._create_prompt_initial_developer_workflow()
|
249 |
memory = MemorySaver()
|
@@ -255,16 +292,18 @@ class MetaPromptGraph:
|
|
255 |
return output_state
|
256 |
|
257 |
|
258 |
-
def run_meta_prompt_graph(
|
|
|
|
|
259 |
"""
|
260 |
Invoke the meta-prompt workflow with the given state and recursion limit.
|
261 |
|
262 |
This method creates a workflow based on the presence of an initial system
|
263 |
message, compiles the workflow with a memory saver, and invokes the graph
|
264 |
-
with the given state. If a recursion limit is reached, it returns the
|
265 |
-
state found so far.
|
266 |
|
267 |
-
|
268 |
state (AgentState): The current state of the agent, containing
|
269 |
necessary context for message formatting.
|
270 |
recursion_limit (int): The maximum number of recursive calls
|
@@ -274,51 +313,52 @@ class MetaPromptGraph:
|
|
274 |
AgentState: The output state of the agent after invoking the workflow.
|
275 |
"""
|
276 |
workflow = self._create_workflow()
|
277 |
-
|
278 |
memory = MemorySaver()
|
279 |
graph = workflow.compile(checkpointer=memory)
|
280 |
-
config = {
|
281 |
-
|
|
|
|
|
282 |
|
283 |
try:
|
284 |
-
self.logger.debug("Invoking graph with state: %s",
|
285 |
-
pprint.pformat(state))
|
286 |
-
|
287 |
output_state = graph.invoke(state, config)
|
288 |
-
|
289 |
self.logger.debug("Output state: %s", pprint.pformat(output_state))
|
290 |
-
|
291 |
return output_state
|
292 |
except GraphRecursionError as e:
|
293 |
-
self.logger.info(
|
294 |
-
"Recursion limit reached. Returning the best state found so far.")
|
295 |
checkpoint_states = graph.get_state(config)
|
296 |
|
297 |
-
|
298 |
-
if len(checkpoint_states) > 0:
|
299 |
output_state = checkpoint_states[0]
|
300 |
return output_state
|
301 |
else:
|
302 |
-
self.logger.info(
|
303 |
-
|
304 |
|
305 |
-
return state
|
306 |
|
|
|
|
|
|
|
|
|
307 |
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
return self.run_meta_prompt_graph(state, recursion_limit)
|
310 |
|
311 |
|
312 |
def _optional_action(
|
313 |
-
self, target_attribute: str,
|
314 |
-
action: RunnableLike,
|
315 |
-
state: AgentState
|
316 |
) -> AgentState:
|
317 |
"""
|
318 |
Optionally invokes an action if the target attribute is not set or empty.
|
319 |
|
320 |
Args:
|
321 |
-
node (str): Node identifier.
|
322 |
target_attribute (str): State attribute to be updated.
|
323 |
action (RunnableLike): Action to be invoked. Defaults to None.
|
324 |
state (AgentState): Current agent state.
|
@@ -327,9 +367,11 @@ class MetaPromptGraph:
|
|
327 |
AgentState: Updated state.
|
328 |
"""
|
329 |
result = {
|
330 |
-
target_attribute:
|
331 |
-
|
332 |
-
|
|
|
|
|
333 |
}
|
334 |
|
335 |
if action is not None and not result[target_attribute]:
|
@@ -339,16 +381,14 @@ class MetaPromptGraph:
|
|
339 |
|
340 |
|
341 |
def _prompt_node(
|
342 |
-
self, node: str, target_attribute: str,
|
343 |
-
state: AgentState
|
344 |
) -> AgentState:
|
345 |
-
"""
|
346 |
-
Prompt a specific node with the given state and update the state with the response.
|
347 |
|
348 |
This method formats messages using the prompt template associated with the node,
|
349 |
logs the invocation and response, and updates the state with the response content.
|
350 |
|
351 |
-
|
352 |
node (str): Node identifier to be prompted.
|
353 |
target_attribute (str): State attribute to be updated with response content.
|
354 |
state (AgentState): Current agent state with necessary context for message formatting.
|
@@ -365,32 +405,37 @@ class MetaPromptGraph:
|
|
365 |
)
|
366 |
|
367 |
for message in formatted_messages:
|
368 |
-
logger.debug(
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
374 |
|
375 |
response = self.llms[node].invoke(formatted_messages)
|
376 |
-
logger.debug(
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
|
|
382 |
|
383 |
return {target_attribute: response.content}
|
384 |
|
|
|
385 |
def _output_history_analyzer(self, state: AgentState) -> AgentState:
|
386 |
"""
|
387 |
Analyzes the output history and updates the best output and its age.
|
388 |
|
389 |
This method checks if the best output is initialized, formats the prompt for
|
390 |
-
the output history analyzer, invokes the language model, and updates the
|
391 |
-
output and its age based on the response.
|
392 |
|
393 |
-
|
394 |
state (AgentState): Current state of the agent with necessary context
|
395 |
for message formatting.
|
396 |
|
@@ -403,8 +448,8 @@ class MetaPromptGraph:
|
|
403 |
state["best_output"] = state["output"]
|
404 |
state["best_system_message"] = state["system_message"]
|
405 |
state["best_output_age"] = 0
|
406 |
-
logger.debug(
|
407 |
-
|
408 |
return state
|
409 |
|
410 |
prompt = self.prompt_templates[NODE_OUTPUT_HISTORY_ANALYZER].format_messages(
|
@@ -429,9 +474,9 @@ class MetaPromptGraph:
|
|
429 |
analysis = response.content
|
430 |
|
431 |
if (state["best_output"] is None or
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
result_dict = {
|
436 |
"best_output": state["output"],
|
437 |
"best_system_message": state["system_message"],
|
@@ -450,6 +495,7 @@ class MetaPromptGraph:
|
|
450 |
|
451 |
return result_dict
|
452 |
|
|
|
453 |
def _prompt_analyzer(self, state: AgentState) -> AgentState:
|
454 |
"""
|
455 |
Analyzes the prompt and updates the state with the analysis and
|
@@ -468,12 +514,20 @@ class MetaPromptGraph:
|
|
468 |
**state)
|
469 |
|
470 |
for message in prompt:
|
471 |
-
logger.debug({
|
472 |
-
|
|
|
|
|
|
|
|
|
473 |
|
474 |
response = self.llms[NODE_PROMPT_ANALYZER].invoke(prompt)
|
475 |
-
logger.debug({
|
476 |
-
|
|
|
|
|
|
|
|
|
477 |
|
478 |
result_dict = {
|
479 |
"analysis": response.content,
|
@@ -483,6 +537,7 @@ class MetaPromptGraph:
|
|
483 |
|
484 |
return result_dict
|
485 |
|
|
|
486 |
def _should_exit_on_max_age(self, state: AgentState) -> str:
|
487 |
"""
|
488 |
Determines whether to exit the workflow based on the maximum output age.
|
@@ -494,21 +549,22 @@ class MetaPromptGraph:
|
|
494 |
str: The decision to continue, rerun, or end the workflow.
|
495 |
"""
|
496 |
if state["max_output_age"] <= 0:
|
497 |
-
# always continue if max age is 0
|
498 |
-
|
499 |
-
|
500 |
if state["best_output_age"] >= state["max_output_age"]:
|
501 |
return END
|
502 |
-
|
503 |
if state["best_output_age"] > 0:
|
504 |
# skip prompt_analyzer and prompt_suggester, goto prompt_developer
|
505 |
-
return "rerun"
|
506 |
-
|
507 |
return "continue"
|
508 |
|
|
|
509 |
def _should_exit_on_acceptable_output(self, state: AgentState) -> str:
|
510 |
"""
|
511 |
-
Determines whether to exit the workflow based on the acceptance status of
|
|
|
512 |
|
513 |
Args:
|
514 |
state (AgentState): The current state of the agent.
|
|
|
23 |
Represents the state of an agent in a conversation.
|
24 |
|
25 |
Attributes:
|
26 |
+
max_output_age (int): The maximum age of the output.
|
27 |
+
user_message (str, optional): The user's message.
|
28 |
+
expected_output (str, optional): The expected output.
|
29 |
+
acceptance_criteria (str, optional): The acceptance criteria.
|
30 |
+
system_message (str, optional): The system message.
|
31 |
+
output (str, optional): The output.
|
32 |
+
suggestions (str, optional): The suggestions.
|
33 |
+
accepted (bool, optional): Whether the output is accepted.
|
34 |
+
analysis (str, optional): The analysis.
|
35 |
+
best_output (str, optional): The best output.
|
36 |
+
best_system_message (str, optional): The best system message.
|
37 |
+
best_output_age (int, optional): The age of the best output.
|
38 |
"""
|
39 |
max_output_age: Optional[int]
|
40 |
user_message: Optional[str]
|
|
|
80 |
"""
|
81 |
return META_PROMPT_NODES
|
82 |
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
llms: Union[BaseLanguageModel, Dict[str, BaseLanguageModel]] = {},
|
86 |
+
prompts: Dict[str, ChatPromptTemplate] = {},
|
87 |
+
aggressive_exploration: bool = False,
|
88 |
+
logger: Optional[logging.Logger] = None,
|
89 |
+
verbose: bool = False,
|
90 |
+
):
|
91 |
"""
|
92 |
Initializes the MetaPromptGraph instance.
|
93 |
|
94 |
Args:
|
95 |
+
llms: The language models for the graph nodes.
|
96 |
+
prompts: The custom prompt templates for the graph nodes.
|
97 |
+
aggressive_exploration: Whether to use aggressive exploration.
|
98 |
+
logger: The logger for the graph.
|
99 |
+
verbose: Whether to set the logger level to DEBUG.
|
100 |
+
|
101 |
+
Initializes the logger, sets the language models and prompt templates
|
102 |
+
for the graph nodes, and updates the prompt templates with custom ones
|
103 |
+
if provided.
|
|
|
|
|
|
|
104 |
"""
|
105 |
self.logger = logger or logging.getLogger(__name__)
|
106 |
if self.logger is not None:
|
107 |
+
self.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
|
|
|
|
|
|
108 |
|
109 |
if isinstance(llms, BaseLanguageModel):
|
110 |
+
self.llms = {node: llms for node in self.get_node_names()}
|
|
|
|
|
111 |
else:
|
112 |
self.llms: Dict[str, BaseLanguageModel] = llms
|
113 |
self.prompt_templates: Dict[str,
|
|
|
118 |
|
119 |
|
120 |
def _create_acceptance_criteria_workflow(self) -> StateGraph:
|
121 |
+
"""
|
122 |
+
Create a workflow state graph for acceptance criteria.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
StateGraph: A state graph representing the workflow.
|
126 |
+
"""
|
127 |
workflow = StateGraph(AgentState)
|
128 |
+
workflow.add_node(
|
129 |
+
NODE_ACCEPTANCE_CRITERIA_DEVELOPER,
|
130 |
+
lambda x: self._prompt_node(
|
131 |
+
NODE_ACCEPTANCE_CRITERIA_DEVELOPER,
|
132 |
+
"acceptance_criteria",
|
133 |
+
x
|
134 |
+
)
|
135 |
+
)
|
136 |
workflow.add_edge(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, END)
|
137 |
workflow.set_entry_point(NODE_ACCEPTANCE_CRITERIA_DEVELOPER)
|
138 |
return workflow
|
139 |
|
140 |
|
141 |
def _create_prompt_initial_developer_workflow(self) -> StateGraph:
|
142 |
+
"""
|
143 |
+
Create a workflow state graph for the initial developer prompt.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
StateGraph: A state graph representing the workflow.
|
147 |
+
"""
|
148 |
workflow = StateGraph(AgentState)
|
149 |
+
workflow.add_node(
|
150 |
+
NODE_PROMPT_INITIAL_DEVELOPER,
|
151 |
+
lambda x: self._prompt_node(
|
152 |
+
NODE_PROMPT_INITIAL_DEVELOPER,
|
153 |
+
"system_message",
|
154 |
+
x
|
155 |
+
)
|
156 |
+
)
|
157 |
workflow.add_edge(NODE_PROMPT_INITIAL_DEVELOPER, END)
|
158 |
workflow.set_entry_point(NODE_PROMPT_INITIAL_DEVELOPER)
|
159 |
return workflow
|
160 |
|
161 |
|
162 |
def _create_workflow(self) -> StateGraph:
|
163 |
+
"""
|
164 |
+
Create a workflow state graph for the meta-prompt.
|
|
|
|
|
|
|
165 |
|
166 |
Returns:
|
167 |
StateGraph: A state graph representing the workflow.
|
168 |
"""
|
169 |
+
|
170 |
workflow = StateGraph(AgentState)
|
171 |
|
172 |
+
# Add nodes
|
173 |
+
workflow.add_node(
|
174 |
+
NODE_PROMPT_DEVELOPER,
|
175 |
+
lambda x: self._prompt_node(
|
176 |
+
NODE_PROMPT_DEVELOPER, "system_message", x
|
177 |
+
)
|
178 |
+
)
|
179 |
+
workflow.add_node(
|
180 |
+
NODE_PROMPT_EXECUTOR,
|
181 |
+
lambda x: self._prompt_node(NODE_PROMPT_EXECUTOR, "output", x)
|
182 |
+
)
|
183 |
+
workflow.add_node(
|
184 |
+
NODE_OUTPUT_HISTORY_ANALYZER,
|
185 |
+
lambda x: self._output_history_analyzer(x)
|
186 |
+
)
|
187 |
+
workflow.add_node(
|
188 |
+
NODE_PROMPT_ANALYZER,
|
189 |
+
lambda x: self._prompt_analyzer(x)
|
190 |
+
)
|
191 |
+
workflow.add_node(
|
192 |
+
NODE_PROMPT_SUGGESTER,
|
193 |
+
lambda x: self._prompt_node(
|
194 |
+
NODE_PROMPT_SUGGESTER, "suggestions", x
|
195 |
+
)
|
196 |
+
)
|
197 |
|
198 |
# Connect nodes
|
199 |
workflow.add_edge(NODE_PROMPT_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
|
|
210 |
END: END
|
211 |
}
|
212 |
)
|
|
|
213 |
workflow.add_conditional_edges(
|
214 |
NODE_PROMPT_ANALYZER,
|
215 |
lambda x: self._should_exit_on_acceptable_output(x),
|
|
|
219 |
}
|
220 |
)
|
221 |
|
222 |
+
# Add optional nodes
|
223 |
+
workflow.add_node(
|
224 |
+
NODE_PROMPT_INITIAL_DEVELOPER,
|
225 |
+
lambda x: self._optional_action(
|
226 |
+
"system_message",
|
227 |
+
lambda x: self._prompt_node(
|
228 |
+
NODE_PROMPT_INITIAL_DEVELOPER, "system_message", x
|
229 |
+
),
|
230 |
+
x
|
231 |
+
)
|
232 |
+
)
|
233 |
+
workflow.add_node(
|
234 |
+
NODE_ACCEPTANCE_CRITERIA_DEVELOPER,
|
235 |
+
lambda x: self._optional_action(
|
236 |
+
"acceptance_criteria",
|
237 |
+
lambda x: self._prompt_node(
|
238 |
+
NODE_ACCEPTANCE_CRITERIA_DEVELOPER,
|
239 |
+
"acceptance_criteria",
|
240 |
+
x
|
241 |
+
),
|
242 |
+
x
|
243 |
+
)
|
244 |
+
)
|
245 |
|
246 |
+
# Add edges to optional nodes
|
247 |
workflow.add_edge(START, NODE_PROMPT_INITIAL_DEVELOPER)
|
248 |
workflow.add_edge(START, NODE_ACCEPTANCE_CRITERIA_DEVELOPER)
|
|
|
249 |
workflow.add_edge(NODE_PROMPT_INITIAL_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
250 |
workflow.add_edge(NODE_ACCEPTANCE_CRITERIA_DEVELOPER, NODE_PROMPT_EXECUTOR)
|
251 |
|
|
|
253 |
|
254 |
|
255 |
def run_acceptance_criteria_graph(self, state: AgentState) -> AgentState:
|
256 |
+
"""Run the acceptance criteria graph with the given state.
|
257 |
+
|
258 |
+
Args:
|
259 |
+
state (AgentState): The current state of the agent.
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
AgentState: The output state of the agent after invoking the graph.
|
263 |
+
"""
|
264 |
self.logger.debug("Creating acceptance criteria workflow")
|
265 |
workflow = self._create_acceptance_criteria_workflow()
|
266 |
memory = MemorySaver()
|
|
|
270 |
output_state = graph.invoke(state, config)
|
271 |
self.logger.debug("Output state: %s", pprint.pformat(output_state))
|
272 |
return output_state
|
273 |
+
|
274 |
|
275 |
def run_prompt_initial_developer_graph(self, state: AgentState) -> AgentState:
|
276 |
+
"""Run the prompt initial developer graph with the given state.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
state (AgentState): The current state of the agent.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
AgentState: The output state of the agent after invoking the graph.
|
283 |
+
"""
|
284 |
self.logger.debug("Creating prompt initial developer workflow")
|
285 |
workflow = self._create_prompt_initial_developer_workflow()
|
286 |
memory = MemorySaver()
|
|
|
292 |
return output_state
|
293 |
|
294 |
|
295 |
+
def run_meta_prompt_graph(
|
296 |
+
self, state: AgentState, recursion_limit: int = 25
|
297 |
+
) -> AgentState:
|
298 |
"""
|
299 |
Invoke the meta-prompt workflow with the given state and recursion limit.
|
300 |
|
301 |
This method creates a workflow based on the presence of an initial system
|
302 |
message, compiles the workflow with a memory saver, and invokes the graph
|
303 |
+
with the given state. If a recursion limit is reached, it returns the
|
304 |
+
best state found so far.
|
305 |
|
306 |
+
Args:
|
307 |
state (AgentState): The current state of the agent, containing
|
308 |
necessary context for message formatting.
|
309 |
recursion_limit (int): The maximum number of recursive calls
|
|
|
313 |
AgentState: The output state of the agent after invoking the workflow.
|
314 |
"""
|
315 |
workflow = self._create_workflow()
|
|
|
316 |
memory = MemorySaver()
|
317 |
graph = workflow.compile(checkpointer=memory)
|
318 |
+
config = {
|
319 |
+
"configurable": {"thread_id": "1"},
|
320 |
+
"recursion_limit": recursion_limit,
|
321 |
+
}
|
322 |
|
323 |
try:
|
324 |
+
self.logger.debug("Invoking graph with state: %s", pprint.pformat(state))
|
|
|
|
|
325 |
output_state = graph.invoke(state, config)
|
|
|
326 |
self.logger.debug("Output state: %s", pprint.pformat(output_state))
|
|
|
327 |
return output_state
|
328 |
except GraphRecursionError as e:
|
329 |
+
self.logger.info("Recursion limit reached. Returning the best state found so far.")
|
|
|
330 |
checkpoint_states = graph.get_state(config)
|
331 |
|
332 |
+
if checkpoint_states:
|
|
|
333 |
output_state = checkpoint_states[0]
|
334 |
return output_state
|
335 |
else:
|
336 |
+
self.logger.info("No checkpoint states found. Returning the input state.")
|
337 |
+
return state
|
338 |
|
|
|
339 |
|
340 |
+
def __call__(
|
341 |
+
self, state: AgentState, recursion_limit: int = 25
|
342 |
+
) -> AgentState:
|
343 |
+
"""Invoke the meta-prompt workflow with the given state and recursion limit.
|
344 |
|
345 |
+
Args:
|
346 |
+
state (AgentState): The current state of the agent.
|
347 |
+
recursion_limit (int): The maximum number of recursive calls allowed.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
AgentState: The output state of the agent after invoking the workflow.
|
351 |
+
"""
|
352 |
return self.run_meta_prompt_graph(state, recursion_limit)
|
353 |
|
354 |
|
355 |
def _optional_action(
|
356 |
+
self, target_attribute: str, action: RunnableLike, state: AgentState
|
|
|
|
|
357 |
) -> AgentState:
|
358 |
"""
|
359 |
Optionally invokes an action if the target attribute is not set or empty.
|
360 |
|
361 |
Args:
|
|
|
362 |
target_attribute (str): State attribute to be updated.
|
363 |
action (RunnableLike): Action to be invoked. Defaults to None.
|
364 |
state (AgentState): Current agent state.
|
|
|
367 |
AgentState: Updated state.
|
368 |
"""
|
369 |
result = {
|
370 |
+
target_attribute: (
|
371 |
+
state.get(target_attribute, "")
|
372 |
+
if isinstance(state, dict)
|
373 |
+
else getattr(state, target_attribute, "")
|
374 |
+
)
|
375 |
}
|
376 |
|
377 |
if action is not None and not result[target_attribute]:
|
|
|
381 |
|
382 |
|
383 |
def _prompt_node(
|
384 |
+
self, node: str, target_attribute: str, state: AgentState
|
|
|
385 |
) -> AgentState:
|
386 |
+
"""Prompt a specific node with the given state and update the state with the response.
|
|
|
387 |
|
388 |
This method formats messages using the prompt template associated with the node,
|
389 |
logs the invocation and response, and updates the state with the response content.
|
390 |
|
391 |
+
Args:
|
392 |
node (str): Node identifier to be prompted.
|
393 |
target_attribute (str): State attribute to be updated with response content.
|
394 |
state (AgentState): Current agent state with necessary context for message formatting.
|
|
|
405 |
)
|
406 |
|
407 |
for message in formatted_messages:
|
408 |
+
logger.debug(
|
409 |
+
{
|
410 |
+
'node': node,
|
411 |
+
'action': 'invoke',
|
412 |
+
'type': message.type,
|
413 |
+
'message': message.content
|
414 |
+
}
|
415 |
+
)
|
416 |
|
417 |
response = self.llms[node].invoke(formatted_messages)
|
418 |
+
logger.debug(
|
419 |
+
{
|
420 |
+
'node': node,
|
421 |
+
'action': 'response',
|
422 |
+
'type': response.type,
|
423 |
+
'message': response.content
|
424 |
+
}
|
425 |
+
)
|
426 |
|
427 |
return {target_attribute: response.content}
|
428 |
|
429 |
+
|
430 |
def _output_history_analyzer(self, state: AgentState) -> AgentState:
|
431 |
"""
|
432 |
Analyzes the output history and updates the best output and its age.
|
433 |
|
434 |
This method checks if the best output is initialized, formats the prompt for
|
435 |
+
the output history analyzer, invokes the language model, and updates the
|
436 |
+
best output and its age based on the response.
|
437 |
|
438 |
+
Args:
|
439 |
state (AgentState): Current state of the agent with necessary context
|
440 |
for message formatting.
|
441 |
|
|
|
448 |
state["best_output"] = state["output"]
|
449 |
state["best_system_message"] = state["system_message"]
|
450 |
state["best_output_age"] = 0
|
451 |
+
logger.debug("Best output initialized to the current output:\n%s",
|
452 |
+
state["output"])
|
453 |
return state
|
454 |
|
455 |
prompt = self.prompt_templates[NODE_OUTPUT_HISTORY_ANALYZER].format_messages(
|
|
|
474 |
analysis = response.content
|
475 |
|
476 |
if (state["best_output"] is None or
|
477 |
+
"# Output ID closer to Expected Output: B" in analysis or
|
478 |
+
(self.aggressive_exploration and
|
479 |
+
"# Output ID closer to Expected Output: A" not in analysis)):
|
480 |
result_dict = {
|
481 |
"best_output": state["output"],
|
482 |
"best_system_message": state["system_message"],
|
|
|
495 |
|
496 |
return result_dict
|
497 |
|
498 |
+
|
499 |
def _prompt_analyzer(self, state: AgentState) -> AgentState:
|
500 |
"""
|
501 |
Analyzes the prompt and updates the state with the analysis and
|
|
|
514 |
**state)
|
515 |
|
516 |
for message in prompt:
|
517 |
+
logger.debug({
|
518 |
+
'node': NODE_PROMPT_ANALYZER,
|
519 |
+
'action': 'invoke',
|
520 |
+
'type': message.type,
|
521 |
+
'message': message.content
|
522 |
+
})
|
523 |
|
524 |
response = self.llms[NODE_PROMPT_ANALYZER].invoke(prompt)
|
525 |
+
logger.debug({
|
526 |
+
'node': NODE_PROMPT_ANALYZER,
|
527 |
+
'action': 'response',
|
528 |
+
'type': response.type,
|
529 |
+
'message': response.content
|
530 |
+
})
|
531 |
|
532 |
result_dict = {
|
533 |
"analysis": response.content,
|
|
|
537 |
|
538 |
return result_dict
|
539 |
|
540 |
+
|
541 |
def _should_exit_on_max_age(self, state: AgentState) -> str:
|
542 |
"""
|
543 |
Determines whether to exit the workflow based on the maximum output age.
|
|
|
549 |
str: The decision to continue, rerun, or end the workflow.
|
550 |
"""
|
551 |
if state["max_output_age"] <= 0:
|
552 |
+
return "continue" # always continue if max age is 0
|
553 |
+
|
|
|
554 |
if state["best_output_age"] >= state["max_output_age"]:
|
555 |
return END
|
556 |
+
|
557 |
if state["best_output_age"] > 0:
|
558 |
# skip prompt_analyzer and prompt_suggester, goto prompt_developer
|
559 |
+
return "rerun"
|
560 |
+
|
561 |
return "continue"
|
562 |
|
563 |
+
|
564 |
def _should_exit_on_acceptable_output(self, state: AgentState) -> str:
|
565 |
"""
|
566 |
+
Determines whether to exit the workflow based on the acceptance status of
|
567 |
+
the output.
|
568 |
|
569 |
Args:
|
570 |
state (AgentState): The current state of the agent.
|