import pandas as pd import streamlit as st import json from langchain_openai import ChatOpenAI from meta_prompt.sample_generator import TaskDescriptionGenerator def process_json(input_json, model_name, generating_batch_size, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) result = generator.process(input_json, generating_batch_size) description = result["description"] suggestions = result["suggestions"] examples_directly = [[example["input"], example["output"]] for example in result["examples_directly"]["examples"]] input_analysis = result["examples_from_briefs"]["input_analysis"] new_example_briefs = result["examples_from_briefs"]["new_example_briefs"] examples_from_briefs = [[example["input"], example["output"]] for example in result["examples_from_briefs"]["examples"]] examples = [[example["input"], example["output"]] for example in result["additional_examples"]] return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples except Exception as e: st.warning(f"An error occurred: {str(e)}. Returning default values.") return "", [], [], "", [], [], [] def generate_description_only(input_json, model_name, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) result = generator.generate_description(input_json) description = result["description"] suggestions = result["suggestions"] return description, suggestions except Exception as e: st.warning(f"An error occurred: {str(e)}") return "", [] def analyze_input(description, model_name, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) input_analysis = generator.analyze_input(description) return input_analysis except Exception as e: st.warning(f"An error occurred: {str(e)}") return "" def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) briefs = generator.generate_briefs( description, input_analysis, generating_batch_size) return briefs except Exception as e: st.warning(f"An error occurred: {str(e)}") return "" def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) result = generator.generate_examples_from_briefs( description, new_example_briefs, input_str, generating_batch_size) examples = [[example["input"], example["output"]] for example in result["examples"]] return examples except Exception as e: st.warning(f"An error occurred: {str(e)}") return [] def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature): try: model = ChatOpenAI( model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) result = generator.generate_examples_directly( description, raw_example, generating_batch_size) examples = [[example["input"], example["output"]] for example in result["examples"]] return examples except Exception as e: st.warning(f"An error occurred: {str(e)}") return [] def example_directly_selected(): if 'selected_example_directly_id' in st.session_state: try: selected_example_ids = st.session_state.selected_example_directly_id[ 'selection']['rows'] # set selected examples to the selected rows if there are any if selected_example_ids: selected_examples = st.session_state.examples_directly_dataframe.iloc[selected_example_ids].to_dict( 'records') st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame else: st.session_state.selected_example = None except Exception as e: st.session_state.selected_example = None def example_from_briefs_selected(): if 'selected_example_from_briefs_id' in st.session_state: try: selected_example_ids = st.session_state.selected_example_from_briefs_id[ 'selection']['rows'] # set selected examples to the selected rows if there are any if selected_example_ids: selected_examples = st.session_state.examples_from_briefs_dataframe.iloc[selected_example_ids].to_dict( 'records') st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame else: st.session_state.selected_example = None except Exception as e: st.session_state.selected_example = None def example_selected(): if 'selected_example_id' in st.session_state: try: selected_example_ids = st.session_state.selected_example_id['selection']['rows'] # set selected examples to the selected rows if there are any if selected_example_ids: selected_examples = st.session_state.examples_dataframe.iloc[selected_example_ids].to_dict( 'records') st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame else: st.session_state.selected_example = None except Exception as e: st.session_state.selected_example = None # Session State if 'shared_input_data' not in st.session_state: st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"]) if 'description_output_text' not in st.session_state: st.session_state.description_output_text = '' if 'suggestions' not in st.session_state: st.session_state.suggestions = [] if 'input_analysis_output_text' not in st.session_state: st.session_state.input_analysis_output_text = '' if 'example_briefs_output_text' not in st.session_state: st.session_state.example_briefs_output_text = '' if 'examples_from_briefs_dataframe' not in st.session_state: st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=[ "Input", "Output"]) if 'examples_directly_dataframe' not in st.session_state: st.session_state.examples_directly_dataframe = pd.DataFrame( columns=["Input", "Output"]) if 'examples_dataframe' not in st.session_state: st.session_state.examples_dataframe = pd.DataFrame( columns=["Input", "Output"]) if 'selected_example' not in st.session_state: st.session_state.selected_example = None def update_description_output_text(): input_json = package_input_data() result = generate_description_only(input_json, model_name, temperature) st.session_state.description_output_text = result[0] st.session_state.suggestions = result[1] def update_input_analysis_output_text(): st.session_state.input_analysis_output_text = analyze_input( description_output, model_name, temperature) def update_example_briefs_output_text(): st.session_state.example_briefs_output_text = generate_briefs( description_output, input_analysis_output, generating_batch_size, model_name, temperature) def update_examples_from_briefs_dataframe(): input_json = package_input_data() examples = generate_examples_from_briefs( description_output, example_briefs_output, input_json, generating_batch_size, model_name, temperature) st.session_state.examples_from_briefs_dataframe = pd.DataFrame( examples, columns=["Input", "Output"]) def update_examples_directly_dataframe(): input_json = package_input_data() examples = generate_examples_directly( description_output, input_json, generating_batch_size, model_name, temperature) st.session_state.examples_directly_dataframe = pd.DataFrame( examples, columns=["Input", "Output"]) def generate_examples_dataframe(): input_json = package_input_data() result = process_json(input_json, model_name, generating_batch_size, temperature) description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples = result st.session_state.description_output_text = description st.session_state.suggestions = suggestions # Ensure suggestions are stored in session state st.session_state.examples_directly_dataframe = pd.DataFrame( examples_directly, columns=["Input", "Output"]) st.session_state.input_analysis_output_text = input_analysis st.session_state.example_briefs_output_text = new_example_briefs st.session_state.examples_from_briefs_dataframe = pd.DataFrame( examples_from_briefs, columns=["Input", "Output"]) st.session_state.examples_dataframe = pd.DataFrame( examples, columns=["Input", "Output"]) st.session_state.selected_example = None def package_input_data(): data = input_data.to_dict(orient='records') lowered_data = [{k.lower(): v for k, v in d.items()} for d in data] return json.dumps(lowered_data, ensure_ascii=False) def export_input_data_to_json(): input_data_json = package_input_data() st.download_button( label="Download input data as JSON", data=input_data_json, file_name="input_data.json", mime="application/json" ) def import_input_data_from_json(): try: if 'input_file' in st.session_state and st.session_state.input_file is not None: data = st.session_state.input_file.getvalue() data = json.loads(data) data = [{k.capitalize(): v for k, v in d.items()} for d in data] st.session_state.shared_input_data = pd.DataFrame(data) except Exception as e: st.warning(f"Failed to import JSON: {str(e)}") def apply_suggestions(): try: result = TaskDescriptionGenerator( ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)).update_description( package_input_data(), st.session_state.description_output_text, st.session_state.selected_suggestions) st.session_state.description_output_text = result["description"] st.session_state.suggestions = result["suggestions"] except Exception as e: st.warning(f"Failed to update description: {str(e)}") def generate_suggestions(): try: description = st.session_state.description_output_text input_json = package_input_data() model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3) generator = TaskDescriptionGenerator(model) result = generator.generate_suggestions(input_json, description) st.session_state.suggestions = result["suggestions"] except Exception as e: st.warning(f"Failed to generate suggestions: {str(e)}") # Function to add new suggestion to the list and select it def add_new_suggestion(): if st.session_state.new_suggestion: st.session_state.suggestions.append(st.session_state.new_suggestion) st.session_state.new_suggestion = "" # Clear the input field def sync_input_data(): # st.session_state.meta_prompt_input_data = input_data.copy() st.session_state.shared_input_data = input_data.copy() def clear_session_state(): st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"]) st.session_state.description_output_text = '' st.session_state.suggestions = [] st.session_state.input_analysis_output_text = '' st.session_state.example_briefs_output_text = '' st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=["Input", "Output"]) st.session_state.examples_directly_dataframe = pd.DataFrame(columns=["Input", "Output"]) st.session_state.examples_dataframe = pd.DataFrame(columns=["Input", "Output"]) st.session_state.selected_example = None # Streamlit UI st.title("LLM Task Example Generator") st.markdown("Enter input-output pairs in the table below to generate a task description, analysis, and additional examples.") # Input column input_data = st.data_editor( st.session_state.shared_input_data, # key="sample_generator_input_data", num_rows="dynamic", use_container_width=True, column_config={ "Input": st.column_config.TextColumn("Input", width="large"), "Output": st.column_config.TextColumn("Output", width="large"), }, hide_index=False ) with st.expander("Model Settings"): col1, col2 = st.columns(2) with col1: input_file = st.file_uploader( label="Import Input Data from JSON", type="json", key="input_file", on_change=import_input_data_from_json ) with col2: export_button = st.button( # Add the export button "Export Input Data to JSON", on_click=export_input_data_to_json ) model_name = st.selectbox( "Model Name", ["llama3-70b-8192", "llama3-8b-8192", "llama-3.1-70b-versatile", "llama-3.1-8b-instant", "gemma2-9b-it"], index=0 ) temperature = st.slider("Temperature", 0.0, 1.0, 1.0, 0.1) generating_batch_size = st.slider("Generating Batch Size", 1, 10, 3, 1) col1, col2, col3 = st.columns(3) with col1: submit_button = st.button( "Generate", type="primary", on_click=generate_examples_dataframe) with col2: sync_button = st.button( "Sync Data", on_click=sync_input_data) with col3: clear_button = st.button( "Clear", on_click=clear_session_state) with st.expander("Description and Analysis"): generate_description_button = st.button( "Generate Description", on_click=update_description_output_text) description_output = st.text_area( "Description", value=st.session_state.description_output_text, height=100) col3, col4, col5 = st.columns(3) with col3: generate_suggestions_button = st.button("Generate Suggestions", on_click=generate_suggestions) with col4: generate_examples_directly_button = st.button( "Generate Examples Directly", on_click=update_examples_directly_dataframe) with col5: analyze_input_button = st.button( "Analyze Input", on_click=update_input_analysis_output_text) # Add multiselect for suggestions selected_suggestions = st.multiselect( "Suggestions", options=st.session_state.suggestions, key="selected_suggestions") # Add button to apply suggestions apply_suggestions_button = st.button("Apply Suggestions", on_click=apply_suggestions) # Add text input for adding new suggestions new_suggestion = st.text_input("Add New Suggestion", key="new_suggestion", on_change=add_new_suggestion) examples_directly_output = st.dataframe(st.session_state.examples_directly_dataframe, use_container_width=True, selection_mode="multi-row", key="selected_example_directly_id", on_select=example_directly_selected, hide_index=False) input_analysis_output = st.text_area( "Input Analysis", value=st.session_state.input_analysis_output_text, height=100) generate_briefs_button = st.button( "Generate Briefs", on_click=update_example_briefs_output_text) example_briefs_output = st.text_area( "Example Briefs", value=st.session_state.example_briefs_output_text, height=100) generate_examples_from_briefs_button = st.button( "Generate Examples from Briefs", on_click=update_examples_from_briefs_dataframe) examples_from_briefs_output = st.dataframe(st.session_state.examples_from_briefs_dataframe, use_container_width=True, selection_mode="multi-row", key="selected_example_from_briefs_id", on_select=example_from_briefs_selected, hide_index=False) examples_output = st.dataframe(st.session_state.examples_dataframe, use_container_width=True, selection_mode="multi-row", key="selected_example_id", on_select=example_selected, hide_index=True) def append_selected_to_input_data(): if st.session_state.selected_example is not None: st.session_state.shared_input_data = pd.concat( [input_data, st.session_state.selected_example], ignore_index=True) st.session_state.selected_example = None def show_sidebar(): if st.session_state.selected_example is not None: with st.sidebar: st.dataframe(st.session_state.selected_example, hide_index=False) # Display DataFrame in sidebar st.button("Append to Input Data", on_click=append_selected_to_input_data) show_sidebar()