Spaces:
Sleeping
Sleeping
File size: 13,187 Bytes
aa7cb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
from TTS.api import TTS
import time
import torchaudio
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import sounddevice as sd
def xtts_v2():
"""
Load and return the XTTS v2 model.
This function initializes the XTTS v2 model from the 🐸TTS library.
The model is configured to use a GPU if available, otherwise it defaults to CPU.
Returns:
TTS: The initialized XTTS v2 model.
Example usage:
tts = xtts_v2()
"""
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# List available 🐸TTS models
# print(TTS().list_models())
# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
return tts
def load_manual_xtts_v2(config_path, checkpoint_path):
"""
Load the XTTS v2 model manually with configuration and checkpoint files.
Args:
config_path (str): Path to the configuration file.
Example: "path/to/config.json"
checkpoint_path (str): Path to the checkpoint directory.
Example: "path/to/checkpoint/"
Returns:
Xtts: The loaded XTTS v2 model.
Example usage:
model = load_manual_xtts_v2("config.json", "checkpoint/")
"""
print("Loading model...")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir=checkpoint_path, use_deepspeed=True)
model.cuda()
return model
import json
import concurrent.futures
# ----------------- StreamXTTSV2 -----------------
def get_text_order(json_path, num_elements, ):
"""
Retrieve a specified number of text elements from a JSON file and update the file.
Args:
json_path (str): Path to the JSON file.
Example: "path/to/data.json"
num_elements (int): Number of elements to retrieve.
Example: 3
Returns:
list: A list of tuples containing text, order, original_path, path_to_save, and language.
Example usage:
text_order = get_text_order("data.json", 3)
"""
with open(json_path) as f:
data = json.load(f)
# check if the data is empty
if not data['text']:
return "No more text to process"
if len(data['text']) < num_elements:
num_elements = len(data['text'])
text = data['text'][:num_elements]
order = data['order'][:num_elements]
original_path = data['original_path'][:num_elements]
path_to_save = data['path_to_save'][:num_elements]
language = data['language'][:num_elements]
# remove the first elements
data['text'] = data['text'][num_elements:]
data['order'] = data['order'][num_elements:]
data['original_path'] = data['original_path'][num_elements:]
data['path_to_save'] = data['path_to_save'][num_elements:]
data['language'] = data['language'][num_elements:]
data['original_text'] = data['original_text'][num_elements:]
# write the data back to the file
with open(json_path, 'w') as f:
json.dump(data, f)
# make it return an array of arrays of text and order
result = [i for i in zip(text, order, original_path, path_to_save, language)]
return result
def append_text_order(json_path, text, order, original_path, path_to_save, language, original_text=None):
"""
Append a text order to a JSON file.
Args:
json_path (str): Path to the JSON file.
Example: "path/to/data.json"
text (str): The text to append.
Example: "Hello, world!"
order (int): The order index.
Example: 1
original_path (str): Path to the original file.
Example: "path/to/original.wav"
path_to_save (str): Path to save the processed file.
Example: "path/to/save.wav"
language (str): Language of the text.
Example: "en"
original_text (str, optional): The original text if available.
Example: "Hola, mundo!"
Example usage:
append_text_order("data.json", "Hello, world!", 1, "original.wav", "save.wav", "en", "Hola, mundo!")
"""
with open(json_path) as f:
data = json.load(f)
data['text'].append(text)
data['order'].append(order)
data['original_path'].append(original_path)
data['path_to_save'].append(path_to_save)
data['language'].append(language)
data['original_text'].append(original_text)
with open(json_path, 'w') as f:
json.dump(data, f)
# ----------------- StreamXTTSV2 -----------------
class StreamXTTSV2:
"""
A class to handle streaming TTS using XTTS v2 model.
Args:
model (Xtts): The XTTS v2 model.
sample_rate (int, optional): The sample rate for audio playback. Default is 24000.
buffer_size (int, optional): The buffer size for audio playback. Default is 2.
"""
def __init__(self, model, sample_rate=24000, buffer_size=2):
self.model = model
#self.gpt_cond_latent = gpt_cond_latent
#self.speaker_embedding = speaker_embedding
self.sample_rate = sample_rate
self.buffer_size = buffer_size
self.speed = 0.95
self.stream_chunk_size = 40
self.buffer = torch.Tensor().to('cpu')
self.chunk_save = torch.Tensor().to('cpu')
self.is_playing = False
self.tasks_order = []
self.order = 0
self.initial = True
def chunk_callback(self, chunk, i, output_dir, order):
"""
Callback function to handle each chunk of audio during streaming.
Args:
chunk (torch.Tensor): The audio chunk.
Example: tensor([0.1, 0.2, 0.3])
i (int): The chunk index.
Example: 1
output_dir (str): Directory to save the chunk.
Example: "output/"
order (int): The order index.
Example: 1
"""
# Accumulate chunk into buffer
self.buffer = torch.cat((self.buffer, chunk.squeeze().to('cpu')), dim=-1)
self.chunk_save = torch.cat((self.chunk_save, chunk.squeeze().to('cpu')), dim=-1)
chunk_filename = output_dir + f"chunk_{i}_{order}.wav"
print(self.sample_rate)
torchaudio.save(chunk_filename, self.chunk_save.unsqueeze(0), self.sample_rate)
print(f"Chunk saved as {chunk_filename}")
self.chunk_save = torch.Tensor().to('cpu')
# Check if buffer has enough chunks to start playing
if not self.is_playing and len(self.buffer) >= self.buffer_size:
self.start_playback()
def start_playback(self):
"""Start audio playback."""
self.is_playing = True
sd.play(self.buffer.numpy(), self.sample_rate, blocking=False)
self.buffer = torch.Tensor().to('cpu') # Reset buffer after starting playback
def play(self, chunks, output_dir, path_to_save, order):
"""
Play the audio chunks and save the complete audio.
Args:
chunks (list): List of audio chunks.
Example: [tensor([0.1, 0.2, 0.3]), tensor([0.4, 0.5, 0.6])]
output_dir (str): Directory to save the chunks.
Example: "output/"
path_to_save (str): Path to save the complete audio file.
Example: "output/complete.wav"
order (int): The order index.
Example: 1
"""
t0 = time.time()
for i, chunk in enumerate(chunks):
#print(chunk)
if i == 0:
print(f"Time to first chunk: {time.time() - t0}")
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
self.chunk_callback(chunk, i, output_dir, order)
# Ensure all remaining audio is played
while sd.get_stream().active:
time.sleep(0.1)
if len(self.buffer) > 0:
sd.play(self.buffer.numpy(), self.sample_rate, blocking=True)
# Save the complete audio to a file
torchaudio.save(path_to_save, self.buffer.unsqueeze(0), self.sample_rate)
print(f"Total audio length: {self.buffer.shape[-1]}")
print("Audio playback finished.")
#self.order += 1
def inference_and_play(self, json_path, output_dir):
"""
Perform inference and play the generated audio.
Args:
json_path (str): Path to the JSON file containing text orders.
Example: "path/to/data.json"
output_dir (str): Directory to save the chunks.
Example: "output/"
"""
print("Inference...")
self.texts = get_text_order(json_path, 3)
if self.texts == "No more text to process":
print("No more text to process")
return
if self.texts == "Not enough text to process":
print("Not enough text to process")
return
# is it returns a list of text and order
if self.texts is not None:
#print(self.texts)
self.gpt_cond_latent, self.speaker_embedding = self.model.get_conditioning_latents(audio_path=[self.texts[0][2]])
path_to_save = self.texts[0][3]
#print(self.gpt_cond_latent, self.speaker_embedding)
#print(self.texts)
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
#text, order = get_text_order(texts)
#print(text, order)
futures = []
print(self.texts)
for text, i, path_a, path_s, lang in self.texts:
#print(text, i, path)
print(f"Processing text {i}: {text}")
print(f"Processing text {i}: {lang}")
future = executor.submit(self.model.inference_stream, text, lang, self.gpt_cond_latent, self.speaker_embedding, stream_chunk_size=self.stream_chunk_size, speed=self.speed)
#print(future.result())
futures.append(future)
for future, text in zip(futures, self.texts):
#print(text)
chunks = future.result()
print(text[1])
self.play(chunks, output_dir, path_to_save, text[1])
self.buffer = torch.Tensor().to('cpu')
self.inference_and_play(json_path, output_dir )
def stream_prod(model, json_path, directory_path):
"""
Stream production function for XTTS v2.
Args:
model (Xtts): The XTTS v2 model.
Example: model = load_manual_xtts_v2("config.json", "checkpoint/")
json_path (str): Path to the JSON file containing text orders.
Example: "path/to/data.json"
directory_path (str): Directory to save the chunks.
Example: "output/"
"""
streamer = StreamXTTSV2(model, buffer_size=2)
results = streamer.inference_and_play(json_path, directory_path)
if results is None:
time.sleep(3)
stream_prod(model, json_path, directory_path)
return "Streaming finished"
def just_inference(model, original_path, output_dir, text, lang, order):
"""
Perform inference and save the generated audio.
Args:
model (Xtts): The XTTS v2 model.
Example: model = load_manual_xtts_v2("config.json", "checkpoint/")
original_path (str): Path to the original audio file.
Example: "path/to/original.wav"
output_dir (str): Directory to save the generated audio file.
Example: "output/"
text (str): The text to be synthesized.
Example: "Hello, world!"
lang (str): The language of the text.
Example: "en"
order (int): The order index.
Example: 1
Returns:
tuple: A tuple containing the path to the saved audio file and the time to first chunk.
Example: ("output/complete.wav", 1.23)
"""
print("Inference...")
path_to_save = output_dir
t0 = time.time()
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[original_path])
chunks = model.inference_stream(
text,
lang,
gpt_cond_latent,
speaker_embedding,
stream_chunk_size= 15 ,
speed=0.95
#temperature=0.1,
#enable_text_splitting=True,
)
full_audio = torch.Tensor().to('cpu')
wav_chuncks = []
for i, chunk in enumerate(chunks):
if i == 1:
time_to_first_chunk = time.time() - t0
print(f"Time to first chunck: {time_to_first_chunk}")
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
wav_chuncks.append(chunk)
full_audio = torch.cat((full_audio, chunk.squeeze().to('cpu')), dim=-1)
# Save the complete audio to a file
torchaudio.save(path_to_save, full_audio.unsqueeze(0), 24000)
print("Inference finished")
return path_to_save, time_to_first_chunk
|