File size: 951 Bytes
d1e319b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import pickle

# Load dataset
file_path = "data/sms_process_data_main.xlsx"
df = pd.read_excel(file_path)

# Prepare training data
X_train, X_test, y_train, y_test = train_test_split(df['MessageText'], df['label'], test_size=0.2, random_state=42)

# Convert text into numerical vectors
vectorizer = TfidfVectorizer()
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)

# Train model
model = LogisticRegression(max_iter=1000)
model.fit(X_train_vec, y_train)

# Save model and vectorizer
with open("models/logistic_regression.pkl", "wb") as model_file:
    pickle.dump(model, model_file)

with open("models/vectorizer.pkl", "wb") as vec_file:
    pickle.dump(vectorizer, vec_file)

print("Model trained and saved successfully!")