import pickle import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression MODEL_PATH = "models/logistic_regression.pkl" VECTORIZER_PATH = "models/vectorizer.pkl" def load_model(): """Load trained model and vectorizer from disk.""" if os.path.exists(MODEL_PATH) and os.path.exists(VECTORIZER_PATH): with open(MODEL_PATH, "rb") as model_file, open(VECTORIZER_PATH, "rb") as vec_file: model = pickle.load(model_file) vectorizer = pickle.load(vec_file) return model, vectorizer else: raise FileNotFoundError("Model or vectorizer not found!") def predict(text, model, vectorizer): """Make predictions using the trained model.""" text_vectorized = vectorizer.transform([text]) prediction = model.predict(text_vectorized)[0] return prediction