Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
url = 'https://potatorolls.com/wp-content/uploads/2020/10/Basic-Hot-Dogs-960x640.jpg'
|
6 |
+
hotdog_image = Image.open(requests.get(url, stream=True).raw)
|
7 |
+
|
8 |
+
def snacks_classifier(input_image):
|
9 |
+
|
10 |
+
# Init model, transforms
|
11 |
+
processor = ViTImageProcessor.from_pretrained('yangswei/snacks_classification')
|
12 |
+
model = ViTForImageClassification.from_pretrained('yangswei/snacks_classification')
|
13 |
+
|
14 |
+
# inputs & outputs
|
15 |
+
inputs = processor(images=input_image, return_tensors="pt")
|
16 |
+
outputs = model(**inputs).logits.softmax(1)
|
17 |
+
labels = model.config.id2label
|
18 |
+
confidences = {labels[i]: outputs[0][i].item() for i in range(len(labels))}
|
19 |
+
|
20 |
+
return confidences
|
21 |
+
|
22 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
23 |
+
gr.Interface(fn=snacks_classifier, inputs="image", outputs=gr.Label(num_top_classes=20, label="Prediction"),
|
24 |
+
examples=[hotdog_image])
|
25 |
+
|
26 |
+
demo.launch()
|