import streamlit as st from PIL import Image from transformers import pipeline import numpy as np from transformers import AutoFeatureExtractor, AutoModelForImageClassification st.set_page_config(layout='wide', page_title='Garbage image classification' ) def main(): st.header("Try it out!") uploaded_file = st.file_uploader("Upload Files",type=['png','jpeg']) img=Image.open(uploaded_file) extractor = AutoFeatureExtractor.from_pretrained("yangy50/garbage-classification") model = AutoModelForImageClassification.from_pretrained("yangy50/garbage-classification") inputs = extractor(img,return_tensors="pt") outputs = model(**inputs) label_num=outputs.logits.softmax(1).argmax(1) label_num=label_num.item() if label_num==0: st.write("cardboard") elif label_num==1: st.write("glass") elif label_num==2: st.write("metal") elif label_num==3: st.write("paper") elif label_num==4: st.write("plastic") else: st.write("trash") if __name__ == '__main__': main()