a96123155
app
c2ce74d
raw
history blame
25 kB
import streamlit as st
from io import StringIO
from Bio import SeqIO
st.title("IRES-LM prediction and mutation")
# Input sequence
st.subheader("Input sequence")
seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
st.subheader("Upload sequence file")
uploaded = st.file_uploader("Sequence file in FASTA format")
# augments
global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
transform_type = st.selectbox("Type of probability transformation",
['', 'sigmoid', 'logit', 'power_law', 'tanh'],
index=2)
mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
if not mut_by_prob and transform_type != '':
st.write("--transform_type must be '' when --mut_by_prob is False")
transform_type = ''
# Import necessary libraries
# import matplotlib
# import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
# import pathlib
import random
# import scanpy as sc
# import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
# from argparse import Namespace
from collections import Counter, OrderedDict
from copy import deepcopy
from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
from esm.data import *
from esm.model.esm2 import ESM2
# from sklearn import preprocessing
# from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
# precision_recall_fscore_support,
# precision_recall_curve, classification_report,
# roc_auc_score, average_precision_score,
# precision_score, recall_score, f1_score,
# accuracy_score)
# from sklearn.model_selection import StratifiedKFold
# from sklearn.utils import class_weight
# from scipy.stats import spearmanr, pearsonr
from torch import nn
from torch.nn import Linear
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm, trange
# Set global variables
# matplotlib.rcParams.update({'font.size': 7})
seed = 19961231
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
epochs = 5
layers = 6
heads = 16
embed_dim = 128
batch_toks = 4096
fc_node = 64
dropout_prob = 0.5
folds = 10
repr_layers = [-1]
include = ["mean"]
truncate = True
finetune = False
return_contacts = False
return_representation = False
device = "cpu"
global tok_to_idx, idx_to_tok, mask_toks_id
alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
# tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
# st.write(tok_to_idx)
mask_toks_id = 8
global w1, w2, w3
w1, w2, w3 = 1, 1, 100
class CNN_linear(nn.Module):
def __init__(self):
super(CNN_linear, self).__init__()
self.esm2 = ESM2(num_layers = layers,
embed_dim = embed_dim,
attention_heads = heads,
alphabet = alphabet)
self.dropout = nn.Dropout(dropout_prob)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
self.output = nn.Linear(in_features = fc_node, out_features = 2)
def predict(self, tokens):
x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
x_cls = x["representations"][layers][:, 0]
o = self.fc(x_cls)
o = self.relu(o)
o = self.dropout(o)
o = self.output(o)
y_prob = torch.softmax(o, dim = 1)
y_pred = torch.argmax(y_prob, dim = 1)
if transform_type:
y_prob_transformed = prob_transform(y_prob[:,1])
return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
else:
return y_prob[:,1], y_pred, x['logits'], o[:,1]
def forward(self, x1, x2):
logit_1, repr_1 = self.predict(x1)
logit_2, repr_2 = self.predict(x2)
return (logit_1, logit_2), (repr_1, repr_2)
def prob_transform(prob, **kwargs): # Logits
"""
Transforms probability values based on the specified method.
:param prob: torch.Tensor, the input probabilities to be transformed
:param transform_type: str, the type of transformation to be applied
:param kwargs: additional parameters for transformations
:return: torch.Tensor, transformed probabilities
"""
if transform_type == 'sigmoid':
x0 = kwget('x0', 0.5)
k = kwget('k', 10.0)
prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
elif transform_type == 'logit':
# Adding a small value to avoid log(0) and log(1)
prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
elif transform_type == 'power_law':
gamma = kwget('gamma', 2.0)
prob_transformed = torch.pow(prob, gamma)
elif transform_type == 'tanh':
k = kwget('k', 2.0)
prob_transformed = torch.tanh(k * prob)
return prob_transformed
def random_replace(sequence, continuous_replace=False):
if end_nt_position == -1: end_nt_position = len(sequence)
if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
# raise ValueError("Invalid start/end positions")
st.write("Invalid start/end positions")
start_nt_position, end_nt_position = 0, -1
# 将序列切片成三部分:替换区域前、替换区域、替换区域后
pre_segment = sequence[:start_nt_position]
target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
post_segment = sequence[end_nt_position + 1:]
if not continuous_replace:
# 随机替换目标片段的mlm_tok_num个位置
indices = random.sample(range(len(target_segment)), mlm_tok_num)
for idx in indices:
target_segment[idx] = '*'
else:
# 在目标片段连续替换mlm_tok_num个位置
max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
return target_segment
start_idx = random.randint(0, max_start_idx)
for idx in range(start_idx, start_idx + mlm_tok_num):
target_segment[idx] = '*'
# 合并并返回最终的序列
return ''.join([pre_segment] + target_segment + [post_segment])
def mlm_seq(seq):
seq_token, masked_sequence_token = [7],[7]
seq_token += [tok_to_idx[token] for token in seq]
masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
masked_seq_token += [tok_to_idx[token] for token in masked_seq]
return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
def batch_mlm_seq(seq_list, continuous_replace = False):
batch_seq = []
batch_masked_seq = []
batch_seq_token_list = []
batch_masked_seq_token_list = []
for i, seq in enumerate(seq_list):
seq_token, masked_seq_token = [7], [7]
seq_token += [tok_to_idx[token] for token in seq]
masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
masked_seq_token += [tok_to_idx[token] for token in masked_seq]
batch_seq.append(seq)
batch_masked_seq.append(masked_seq)
batch_seq_token_list.append(seq_token)
batch_masked_seq_token_list.append(masked_seq_token)
return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
# Only remain the AGCT logits
esm_logits = esm_logits[:,:,3:7]
# Get the predicted tokens using argmax
predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
batch_size, seq_len, vocab_size = esm_logits.size()
if exclude_low_prob: min_prob = 1 / vocab_size
# Initialize an empty list to store the recovered sequences
recovered_sequences, recovered_toks = [], []
for i in range(batch_size):
recovered_sequence_i, recovered_tok_i = [], []
for j in range(seq_len):
if masked_toks[i][j] == 8:
st.write(i,j)
### Sample M recovery sequences using the logits
recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
recovery_probs /= recovery_probs.sum() # Normalize the probabilities
### 有放回抽样
max_retries = 5
retries = 0
success = False
while retries < max_retries and not success:
try:
recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
success = True # 设置成功标志
except ValueError as e:
retries += 1
st.write(f"Attempt {retries} failed with error: {e}")
if retries >= max_retries:
st.write("Max retries reached. Skipping this iteration.")
### recovery to sequence
if retries < max_retries:
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
recovery_seq = deepcopy(list(masked_seqs[i]))
recovery_tok = deepcopy(masked_toks[i])
recovery_tok[j] = idx
recovery_seq[j-1] = idx_to_tok[idx]
recovered_tok_i.append(recovery_tok)
recovered_sequence_i.append(''.join(recovery_seq))
recovered_sequences.extend(recovered_sequence_i)
recovered_toks.extend(recovered_tok_i)
return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
# Only remain the AGCT logits
esm_logits = esm_logits[:,:,3:7]
# Get the predicted tokens using argmax
predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
batch_size, seq_len, vocab_size = esm_logits.size()
if exclude_low_prob: min_prob = 1 / vocab_size
# Initialize an empty list to store the recovered sequences
recovered_sequences, recovered_toks = [], []
for i in range(batch_size):
recovered_sequence_i, recovered_tok_i = [], []
recovered_masked_num = 0
for j in range(seq_len):
if masked_toks[i][j] == 8:
### Sample M recovery sequences using the logits
recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
recovery_probs /= recovery_probs.sum() # Normalize the probabilities
### 有放回抽样
max_retries = 5
retries = 0
success = False
while retries < max_retries and not success:
try:
recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
success = True # 设置成功标志
except ValueError as e:
retries += 1
st.write(f"Attempt {retries} failed with error: {e}")
if retries >= max_retries:
st.write("Max retries reached. Skipping this iteration.")
### recovery to sequence
if recovered_masked_num == 0:
if retries < max_retries:
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
recovery_seq = deepcopy(list(masked_seqs[i]))
recovery_tok = deepcopy(masked_toks[i])
recovery_tok[j] = idx
recovery_seq[j-1] = idx_to_tok[idx]
recovered_tok_i.append(recovery_tok)
recovered_sequence_i.append(''.join(recovery_seq))
elif recovered_masked_num > 0:
if retries < max_retries:
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
recovery_seq_temp = list(recovery_seq)
recovery_tok[j] = idx
recovery_seq_temp[j-1] = idx_to_tok[idx]
recovered_tok_i.append(recovery_tok)
recovered_sequence_i.append(''.join(recovery_seq_temp))
recovered_masked_num += 1
recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
recovered_sequences.extend(recovered_sequence_i)
recovered_toks.extend(recovered_tok_i)
recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
def mismatched_positions(s1, s2):
# 这个函数假定两个字符串的长度相同。
"""Return the number of positions where two strings differ."""
# The number of mismatches will be the sum of positions where characters are not the same
return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
seen = {}
unique_seqs = []
unique_probs = []
unique_logits = []
for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
if seq not in seen:
unique_seqs.append(seq)
unique_probs.append(prob)
unique_logits.append(logit)
seen[seq] = True
return unique_seqs, unique_probs, unique_logits
def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
seen = {}
unique_seqs = []
unique_probs = []
for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
if seq not in seen:
unique_seqs.append(seq)
unique_probs.append(prob)
seen[seq] = True
return unique_seqs, unique_probs
def mutated_seq(wt_seq, wt_label):
wt_seq = '!'+ wt_seq
wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
st.write(f'Wild Type: Length = ', len(wt_seq), '\n', wt_seq)
st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
# st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
# pbar = tqdm(total=n_mut)
mutated_seqs = []
i = 1
pbar = st.progress(i, text="mutated number of sequence")
while i <= n_mut:
if i == 1: seeds_ep = [wt_seq[1:]]
seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
for seed in seeds_ep:
seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
_, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
filtered_mut_seqs = []
filtered_mut_probs = []
filtered_mut_logits = []
if mut_by_prob:
for z in range(len(mut_seqs)):
if mutate2stronger:
if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
filtered_mut_seqs.append(mut_seqs[z])
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
else:
if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
filtered_mut_seqs.append(mut_seqs[z])
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
else:
for z in range(len(mut_seqs)):
if mutate2stronger:
if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
filtered_mut_seqs.append(mut_seqs[z])
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
else:
if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
filtered_mut_seqs.append(mut_seqs[z])
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
### Save
seeds_next_ep.extend(filtered_mut_seqs)
seeds_probs_next_ep.extend(filtered_mut_probs)
seeds_logits_next_ep.extend(filtered_mut_logits)
seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
### Sampling based on prob
if len(seeds_next_ep) > n_sampling_designs_ep:
seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
seeds_ep = seeds_next_ep
i += 1
# pbar.update(1)
pbar.progress(i/n_mut, text="Mutating")
# pbar.close()
st.success('Done', icon="✅")
mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
return mutated_seqs
def read_raw(raw_input):
ids = []
sequences = []
file = StringIO(raw_input)
for record in SeqIO.parse(file, "fasta"):
# 检查序列是否只包含A, G, C, T
sequence = str(record.seq.back_transcribe()).upper()
if not set(sequence).issubset(set("AGCT")):
st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
continue
# 将符合条件的序列添加到列表中
ids.append(record.id)
sequences.append(sequence)
return ids, sequences
def predict_raw(raw_input):
state_dict = torch.load('model.pt', map_location=torch.device(device))
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace('module.','')
new_state_dict[name] = v
model = CNN_linear().to(device)
model.load_state_dict(new_state_dict, strict = False)
model.eval()
st.write(model)
# st.write('====Parse Input====')
ids, seqs = read_raw(raw_input)
# st.write('====Predict====')
res_pd = pd.DataFrame()
for wt_seq, wt_id in zip(seqs, ids):
try:
st.write(wt_id, wt_seq)
res = mutated_seq(wt_seq, wt_id)
st.write(res)
res_pd.append(res)
except:
st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
# st.write(pred)
return res_pd
# Run
if st.button("Predict and Mutate"):
if uploaded:
result = predict_raw(uploaded.getvalue().decode())
else:
result = predict_raw(seq)
result_file = result.to_csv(index=False)
st.download_button("Download", result_file, file_name=output_filename+".csv")
st.dataframe(result)