Spaces:
Runtime error
Runtime error
import streamlit as st | |
from io import StringIO | |
from Bio import SeqIO | |
import numpy as np | |
import os | |
import pandas as pd | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from collections import Counter, OrderedDict | |
from copy import deepcopy | |
from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer | |
from esm.data import * | |
from esm.model.esm2 import ESM2 | |
from torch import nn | |
from torch.nn import Linear | |
from torch.nn.utils.rnn import pad_sequence | |
from torch.utils.data import Dataset, DataLoader | |
seed = 19961231 | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
st.title("IRES-LM prediction and mutation") | |
# Input sequence | |
st.subheader("Input sequence") | |
seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA") | |
st.subheader("Upload sequence file") | |
uploaded = st.file_uploader("Sequence file in FASTA format") | |
# augments | |
global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger | |
output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation') | |
start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0) | |
end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1) | |
mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True) | |
transform_type = st.selectbox("Type of probability transformation", | |
['', 'sigmoid', 'logit', 'power_law', 'tanh'], | |
index=2) | |
mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1) | |
n_mut = st.number_input("Maximum number of mutations for each sequence", value=3) | |
n_designs_ep = st.number_input("Number of mutations per epoch", value=10) | |
n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5) | |
n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1) | |
mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True) | |
if not mut_by_prob and transform_type != '': | |
st.write("--transform_type must be '' when --mut_by_prob is False") | |
transform_type = '' | |
global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune | |
epochs = 5 | |
layers = 6 | |
heads = 16 | |
embed_dim = 128 | |
batch_toks = 4096 | |
fc_node = 64 | |
dropout_prob = 0.5 | |
folds = 10 | |
repr_layers = [-1] | |
include = ["mean"] | |
truncate = True | |
finetune = False | |
return_contacts = False | |
return_representation = False | |
global tok_to_idx, idx_to_tok, mask_toks_id | |
alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT') | |
assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9} | |
# tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9} | |
tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9} | |
idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()} | |
# st.write(tok_to_idx) | |
mask_toks_id = 8 | |
global w1, w2, w3 | |
w1, w2, w3 = 1, 1, 100 | |
class CNN_linear(nn.Module): | |
def __init__(self): | |
super(CNN_linear, self).__init__() | |
self.esm2 = ESM2(num_layers = layers, | |
embed_dim = embed_dim, | |
attention_heads = heads, | |
alphabet = alphabet) | |
self.dropout = nn.Dropout(dropout_prob) | |
self.relu = nn.ReLU() | |
self.flatten = nn.Flatten() | |
self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node) | |
self.output = nn.Linear(in_features = fc_node, out_features = 2) | |
def predict(self, tokens): | |
x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True) | |
x_cls = x["representations"][layers][:, 0] | |
o = self.fc(x_cls) | |
o = self.relu(o) | |
o = self.dropout(o) | |
o = self.output(o) | |
y_prob = torch.softmax(o, dim = 1) | |
y_pred = torch.argmax(y_prob, dim = 1) | |
if transform_type: | |
y_prob_transformed = prob_transform(y_prob[:,1]) | |
return y_prob[:,1], y_pred, x['logits'], y_prob_transformed | |
else: | |
return y_prob[:,1], y_pred, x['logits'], o[:,1] | |
def forward(self, x1, x2): | |
logit_1, repr_1 = self.predict(x1) | |
logit_2, repr_2 = self.predict(x2) | |
return (logit_1, logit_2), (repr_1, repr_2) | |
def prob_transform(prob, **kwargs): # Logits | |
""" | |
Transforms probability values based on the specified method. | |
:param prob: torch.Tensor, the input probabilities to be transformed | |
:param transform_type: str, the type of transformation to be applied | |
:param kwargs: additional parameters for transformations | |
:return: torch.Tensor, transformed probabilities | |
""" | |
if transform_type == 'sigmoid': | |
x0 = kwget('x0', 0.5) | |
k = kwget('k', 10.0) | |
prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0))) | |
elif transform_type == 'logit': | |
# Adding a small value to avoid log(0) and log(1) | |
prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6) | |
elif transform_type == 'power_law': | |
gamma = kwget('gamma', 2.0) | |
prob_transformed = torch.pow(prob, gamma) | |
elif transform_type == 'tanh': | |
k = kwget('k', 2.0) | |
prob_transformed = torch.tanh(k * prob) | |
return prob_transformed | |
def random_replace(sequence, continuous_replace=False): | |
global start_nt_position, end_nt_position | |
if end_nt_position == -1: end_nt_position = len(sequence)-1 | |
if start_nt_position < 0 or end_nt_position > len(sequence)-1 or start_nt_position > end_nt_position: | |
# raise ValueError("Invalid start/end positions") | |
st.write("Invalid start/end positions") | |
start_nt_position, end_nt_position = 0, len(sequence)-1 | |
# 将序列切片成三部分:替换区域前、替换区域、替换区域后 | |
pre_segment = sequence[:start_nt_position] | |
target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间 | |
post_segment = sequence[end_nt_position + 1:] | |
if not continuous_replace: | |
# 随机替换目标片段的mlm_tok_num个位置 | |
indices = random.sample(range(len(target_segment)), mlm_tok_num) | |
for idx in indices: | |
target_segment[idx] = '*' | |
else: | |
# 在目标片段连续替换mlm_tok_num个位置 | |
max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度 | |
if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列 | |
return target_segment | |
start_idx = random.randint(0, max_start_idx) | |
for idx in range(start_idx, start_idx + mlm_tok_num): | |
target_segment[idx] = '*' | |
# 合并并返回最终的序列 | |
return ''.join([pre_segment] + target_segment + [post_segment]) | |
def mlm_seq(seq): | |
seq_token, masked_sequence_token = [7],[7] | |
seq_token += [tok_to_idx[token] for token in seq] | |
masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*' | |
masked_seq_token += [tok_to_idx[token] for token in masked_seq] | |
return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token) | |
def batch_mlm_seq(seq_list, continuous_replace = False): | |
batch_seq = [] | |
batch_masked_seq = [] | |
batch_seq_token_list = [] | |
batch_masked_seq_token_list = [] | |
for i, seq in enumerate(seq_list): | |
seq_token, masked_seq_token = [7], [7] | |
seq_token += [tok_to_idx[token] for token in seq] | |
masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*' | |
masked_seq_token += [tok_to_idx[token] for token in masked_seq] | |
batch_seq.append(seq) | |
batch_masked_seq.append(masked_seq) | |
batch_seq_token_list.append(seq_token) | |
batch_masked_seq_token_list.append(masked_seq_token) | |
return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list) | |
def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False): | |
# Only remain the AGCT logits | |
esm_logits = esm_logits[:,:,3:7] | |
# Get the predicted tokens using argmax | |
predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist() | |
batch_size, seq_len, vocab_size = esm_logits.size() | |
if exclude_low_prob: min_prob = 1 / vocab_size | |
# Initialize an empty list to store the recovered sequences | |
recovered_sequences, recovered_toks = [], [] | |
for i in range(batch_size): | |
recovered_sequence_i, recovered_tok_i = [], [] | |
for j in range(seq_len): | |
if masked_toks[i][j] == 8: | |
st.write(i,j) | |
### Sample M recovery sequences using the logits | |
recovery_probs = torch.softmax(esm_logits[i, j], dim=-1) | |
recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token | |
if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob | |
recovery_probs /= recovery_probs.sum() # Normalize the probabilities | |
### 有放回抽样 | |
max_retries = 5 | |
retries = 0 | |
success = False | |
while retries < max_retries and not success: | |
try: | |
recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False)) | |
success = True # 设置成功标志 | |
except ValueError as e: | |
retries += 1 | |
st.write(f"Attempt {retries} failed with error: {e}") | |
if retries >= max_retries: | |
st.write("Max retries reached. Skipping this iteration.") | |
### recovery to sequence | |
if retries < max_retries: | |
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]: | |
recovery_seq = deepcopy(list(masked_seqs[i])) | |
recovery_tok = deepcopy(masked_toks[i]) | |
recovery_tok[j] = idx | |
recovery_seq[j-1] = idx_to_tok[idx] | |
recovered_tok_i.append(recovery_tok) | |
recovered_sequence_i.append(''.join(recovery_seq)) | |
recovered_sequences.extend(recovered_sequence_i) | |
recovered_toks.extend(recovered_tok_i) | |
return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks)) | |
def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False): | |
# Only remain the AGCT logits | |
esm_logits = esm_logits[:,:,3:7] | |
# Get the predicted tokens using argmax | |
predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist() | |
batch_size, seq_len, vocab_size = esm_logits.size() | |
if exclude_low_prob: min_prob = 1 / vocab_size | |
# Initialize an empty list to store the recovered sequences | |
recovered_sequences, recovered_toks = [], [] | |
for i in range(batch_size): | |
recovered_sequence_i, recovered_tok_i = [], [] | |
recovered_masked_num = 0 | |
for j in range(seq_len): | |
if masked_toks[i][j] == 8: | |
### Sample M recovery sequences using the logits | |
recovery_probs = torch.softmax(esm_logits[i, j], dim=-1) | |
recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token | |
if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob | |
recovery_probs /= recovery_probs.sum() # Normalize the probabilities | |
### 有放回抽样 | |
max_retries = 5 | |
retries = 0 | |
success = False | |
while retries < max_retries and not success: | |
try: | |
recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False)) | |
success = True # 设置成功标志 | |
except ValueError as e: | |
retries += 1 | |
st.write(f"Attempt {retries} failed with error: {e}") | |
if retries >= max_retries: | |
st.write("Max retries reached. Skipping this iteration.") | |
### recovery to sequence | |
if recovered_masked_num == 0: | |
if retries < max_retries: | |
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]: | |
recovery_seq = deepcopy(list(masked_seqs[i])) | |
recovery_tok = deepcopy(masked_toks[i]) | |
recovery_tok[j] = idx | |
recovery_seq[j-1] = idx_to_tok[idx] | |
recovered_tok_i.append(recovery_tok) | |
recovered_sequence_i.append(''.join(recovery_seq)) | |
elif recovered_masked_num > 0: | |
if retries < max_retries: | |
for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]: | |
for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。 | |
recovery_seq_temp = list(recovery_seq) | |
recovery_tok[j] = idx | |
recovery_seq_temp[j-1] = idx_to_tok[idx] | |
recovered_tok_i.append(recovery_tok) | |
recovered_sequence_i.append(''.join(recovery_seq_temp)) | |
recovered_masked_num += 1 | |
recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s] | |
recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices] | |
recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices] | |
recovered_sequences.extend(recovered_sequence_i) | |
recovered_toks.extend(recovered_tok_i) | |
recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks) | |
return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks)) | |
def mismatched_positions(s1, s2): | |
# 这个函数假定两个字符串的长度相同。 | |
"""Return the number of positions where two strings differ.""" | |
# The number of mismatches will be the sum of positions where characters are not the same | |
return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2) | |
def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits): | |
seen = {} | |
unique_seqs = [] | |
unique_probs = [] | |
unique_logits = [] | |
for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits): | |
if seq not in seen: | |
unique_seqs.append(seq) | |
unique_probs.append(prob) | |
unique_logits.append(logit) | |
seen[seq] = True | |
return unique_seqs, unique_probs, unique_logits | |
def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs): | |
seen = {} | |
unique_seqs = [] | |
unique_probs = [] | |
for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs): | |
if seq not in seen: | |
unique_seqs.append(seq) | |
unique_probs.append(prob) | |
seen[seq] = True | |
return unique_seqs, unique_probs | |
def mutated_seq(wt_seq, wt_label): | |
wt_seq = '!'+ wt_seq | |
wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device) | |
wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok) | |
st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}') | |
st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}') | |
# st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger) | |
# pbar = tqdm(total=n_mut) | |
mutated_seqs = [] | |
i = 1 | |
# pbar = st.progress(i, text="mutated number of sequence") | |
while i <= n_mut: | |
if i == 1: seeds_ep = [wt_seq[1:]] | |
seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], [] | |
for seed in seeds_ep: | |
seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*" | |
seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device)) | |
_, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device)) | |
mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit) | |
mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device)) | |
### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob | |
filtered_mut_seqs = [] | |
filtered_mut_probs = [] | |
filtered_mut_logits = [] | |
if mut_by_prob: | |
for z in range(len(mut_seqs)): | |
if mutate2stronger: | |
if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob: | |
filtered_mut_seqs.append(mut_seqs[z]) | |
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy()) | |
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy()) | |
else: | |
if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob: | |
filtered_mut_seqs.append(mut_seqs[z]) | |
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy()) | |
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy()) | |
else: | |
for z in range(len(mut_seqs)): | |
if mutate2stronger: | |
if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit: | |
filtered_mut_seqs.append(mut_seqs[z]) | |
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy()) | |
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy()) | |
else: | |
if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit: | |
filtered_mut_seqs.append(mut_seqs[z]) | |
filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy()) | |
filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy()) | |
### Save | |
seeds_next_ep.extend(filtered_mut_seqs) | |
seeds_probs_next_ep.extend(filtered_mut_probs) | |
seeds_logits_next_ep.extend(filtered_mut_logits) | |
seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep) | |
### Sampling based on prob | |
if len(seeds_next_ep) > n_sampling_designs_ep: | |
seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities | |
seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False) | |
seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep] | |
seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep] | |
seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep] | |
seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep] | |
mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep))) | |
seeds_ep = seeds_next_ep | |
i += 1 | |
# pbar.update(1) | |
# pbar.progress(i/n_mut, text="Mutating") | |
# pbar.close() | |
# st.success('Done', icon="✅") | |
mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)]) | |
mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True) | |
mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq') | |
return mutated_seqs | |
def read_raw(raw_input): | |
ids = [] | |
sequences = [] | |
file = StringIO(raw_input) | |
for record in SeqIO.parse(file, "fasta"): | |
# 检查序列是否只包含A, G, C, T | |
sequence = str(record.seq.back_transcribe()).upper() | |
if not set(sequence).issubset(set("AGCT")): | |
st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.") | |
continue | |
# 将符合条件的序列添加到列表中 | |
ids.append(record.id) | |
sequences.append(sequence) | |
return ids, sequences | |
def predict_raw(raw_input): | |
model.eval() | |
# st.write('====Parse Input====') | |
ids, seqs = read_raw(raw_input) | |
# st.write('====Predict====') | |
res_pd = pd.DataFrame(columns = ['wildtype_id', 'mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']) | |
for wt_seq, wt_id in zip(seqs, ids): | |
try: | |
res = mutated_seq(wt_seq, wt_id) | |
res['wildtype_id'] = wt_id | |
res_pd = pd.concat([res_pd,res], axis = 0) | |
except: | |
st.write('====Please Try Again this sequence: ', wt_id, wt_seq) | |
# st.write(res_pd) | |
return res_pd | |
global model, device | |
device = "cpu" | |
state_dict = torch.load('model.pt', map_location=torch.device(device)) | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k.replace('module.','') | |
new_state_dict[name] = v | |
model = CNN_linear().to(device) | |
model.load_state_dict(new_state_dict, strict = False) | |
# Run | |
if st.button("Predict and Mutate"): | |
if uploaded: | |
result = predict_raw(uploaded.getvalue().decode()) | |
else: | |
result = predict_raw(seq) | |
result_file = result.to_csv(index=False) | |
st.download_button("Download", result_file, file_name=output_filename+".csv") | |
st.dataframe(result) |