a96123155 commited on
Commit
2325b92
·
1 Parent(s): 5b2d2a0
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +520 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import StringIO
3
+ from Bio import SeqIO
4
+
5
+ import numpy as np
6
+ import os
7
+ import pandas as pd
8
+ import random
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from collections import Counter, OrderedDict
13
+ from copy import deepcopy
14
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
15
+ from esm.data import *
16
+ from esm.model.esm2 import ESM2
17
+ from torch import nn
18
+ from torch.nn import Linear
19
+ from torch.nn.utils.rnn import pad_sequence
20
+ from torch.utils.data import Dataset, DataLoader
21
+ seed = 19961231
22
+ random.seed(seed)
23
+ np.random.seed(seed)
24
+ torch.manual_seed(seed)
25
+
26
+
27
+ st.title("IRES-LM prediction and mutation")
28
+
29
+ # Input sequence
30
+ st.subheader("Input sequence")
31
+
32
+ seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
33
+ st.subheader("Upload sequence file")
34
+ uploaded = st.file_uploader("Sequence file in FASTA format")
35
+
36
+ # augments
37
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
38
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
39
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
40
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
41
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
42
+ transform_type = st.selectbox("Type of probability transformation",
43
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
44
+ index=2)
45
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
46
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
47
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
48
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
49
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
50
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
51
+ if not mut_by_prob and transform_type != '':
52
+ st.write("--transform_type must be '' when --mut_by_prob is False")
53
+ transform_type = ''
54
+ st.write(output_filename,start_nt_position,end_nt_position,mut_by_prob,transform_type,mlm_tok_num,n_mut,n_designs_ep,n_sampling_designs_ep,n_mlm_recovery_sampling,mutate2stronger)
55
+
56
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
57
+
58
+ epochs = 5
59
+ layers = 6
60
+ heads = 16
61
+ embed_dim = 128
62
+ batch_toks = 4096
63
+ fc_node = 64
64
+ dropout_prob = 0.5
65
+ folds = 10
66
+ repr_layers = [-1]
67
+ include = ["mean"]
68
+ truncate = True
69
+ finetune = False
70
+ return_contacts = False
71
+ return_representation = False
72
+
73
+ global tok_to_idx, idx_to_tok, mask_toks_id
74
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
75
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
76
+
77
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
78
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
79
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
80
+ # st.write(tok_to_idx)
81
+ mask_toks_id = 8
82
+
83
+ global w1, w2, w3
84
+ w1, w2, w3 = 1, 1, 100
85
+
86
+ class CNN_linear(nn.Module):
87
+ def __init__(self):
88
+ super(CNN_linear, self).__init__()
89
+
90
+ self.esm2 = ESM2(num_layers = layers,
91
+ embed_dim = embed_dim,
92
+ attention_heads = heads,
93
+ alphabet = alphabet)
94
+
95
+ self.dropout = nn.Dropout(dropout_prob)
96
+ self.relu = nn.ReLU()
97
+ self.flatten = nn.Flatten()
98
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
99
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
100
+
101
+ def predict(self, tokens):
102
+
103
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
104
+ x_cls = x["representations"][layers][:, 0]
105
+
106
+ o = self.fc(x_cls)
107
+ o = self.relu(o)
108
+ o = self.dropout(o)
109
+ o = self.output(o)
110
+
111
+ y_prob = torch.softmax(o, dim = 1)
112
+ y_pred = torch.argmax(y_prob, dim = 1)
113
+
114
+ if transform_type:
115
+ y_prob_transformed = prob_transform(y_prob[:,1])
116
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
117
+ else:
118
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
119
+
120
+ def forward(self, x1, x2):
121
+ logit_1, repr_1 = self.predict(x1)
122
+ logit_2, repr_2 = self.predict(x2)
123
+ return (logit_1, logit_2), (repr_1, repr_2)
124
+
125
+
126
+ def prob_transform(prob, **kwargs): # Logits
127
+ """
128
+ Transforms probability values based on the specified method.
129
+
130
+ :param prob: torch.Tensor, the input probabilities to be transformed
131
+ :param transform_type: str, the type of transformation to be applied
132
+ :param kwargs: additional parameters for transformations
133
+ :return: torch.Tensor, transformed probabilities
134
+ """
135
+
136
+ if transform_type == 'sigmoid':
137
+ x0 = kwget('x0', 0.5)
138
+ k = kwget('k', 10.0)
139
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
140
+
141
+ elif transform_type == 'logit':
142
+ # Adding a small value to avoid log(0) and log(1)
143
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
144
+
145
+ elif transform_type == 'power_law':
146
+ gamma = kwget('gamma', 2.0)
147
+ prob_transformed = torch.pow(prob, gamma)
148
+
149
+ elif transform_type == 'tanh':
150
+ k = kwget('k', 2.0)
151
+ prob_transformed = torch.tanh(k * prob)
152
+
153
+ return prob_transformed
154
+
155
+ def random_replace(sequence, continuous_replace=False):
156
+ st.write('----start_nt_position=', start_nt_position)
157
+ if end_nt_position == -1: end_nt_position = len(wt_seq)
158
+ if start_nt_position < 0 or end_nt_position >= len(sequence) or start_nt_position > end_nt_position:
159
+ # raise ValueError("Invalid start/end positions")
160
+ st.write("Invalid start/end positions")
161
+ start_nt_position, end_nt_position = 0, len(sequence)
162
+
163
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
164
+ pre_segment = sequence[:start_nt_position]
165
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
166
+ post_segment = sequence[end_nt_position + 1:]
167
+
168
+ if not continuous_replace:
169
+ # 随机替换目标片段的mlm_tok_num个位置
170
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
171
+ for idx in indices:
172
+ target_segment[idx] = '*'
173
+ else:
174
+ # 在目标片段连续替换mlm_tok_num个位置
175
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
176
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
177
+ return target_segment
178
+ start_idx = random.randint(0, max_start_idx)
179
+ for idx in range(start_idx, start_idx + mlm_tok_num):
180
+ target_segment[idx] = '*'
181
+
182
+ # 合并并返回最终的序列
183
+ return ''.join([pre_segment] + target_segment + [post_segment])
184
+
185
+
186
+ def mlm_seq(seq):
187
+ seq_token, masked_sequence_token = [7],[7]
188
+ seq_token += [tok_to_idx[token] for token in seq]
189
+
190
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
191
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
192
+
193
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
194
+
195
+ def batch_mlm_seq(seq_list, continuous_replace = False):
196
+ batch_seq = []
197
+ batch_masked_seq = []
198
+ batch_seq_token_list = []
199
+ batch_masked_seq_token_list = []
200
+
201
+ for i, seq in enumerate(seq_list):
202
+ seq_token, masked_seq_token = [7], [7]
203
+ seq_token += [tok_to_idx[token] for token in seq]
204
+
205
+ masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
206
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
207
+
208
+ batch_seq.append(seq)
209
+ batch_masked_seq.append(masked_seq)
210
+
211
+ batch_seq_token_list.append(seq_token)
212
+ batch_masked_seq_token_list.append(masked_seq_token)
213
+
214
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
215
+
216
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
217
+ # Only remain the AGCT logits
218
+ esm_logits = esm_logits[:,:,3:7]
219
+ # Get the predicted tokens using argmax
220
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
221
+
222
+ batch_size, seq_len, vocab_size = esm_logits.size()
223
+ if exclude_low_prob: min_prob = 1 / vocab_size
224
+ # Initialize an empty list to store the recovered sequences
225
+ recovered_sequences, recovered_toks = [], []
226
+
227
+ for i in range(batch_size):
228
+ recovered_sequence_i, recovered_tok_i = [], []
229
+ for j in range(seq_len):
230
+ if masked_toks[i][j] == 8:
231
+ st.write(i,j)
232
+ ### Sample M recovery sequences using the logits
233
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
234
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
235
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
236
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
237
+
238
+ ### 有放回抽样
239
+ max_retries = 5
240
+ retries = 0
241
+ success = False
242
+
243
+ while retries < max_retries and not success:
244
+ try:
245
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
246
+ success = True # 设置成功标志
247
+ except ValueError as e:
248
+ retries += 1
249
+ st.write(f"Attempt {retries} failed with error: {e}")
250
+ if retries >= max_retries:
251
+ st.write("Max retries reached. Skipping this iteration.")
252
+
253
+ ### recovery to sequence
254
+ if retries < max_retries:
255
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
256
+ recovery_seq = deepcopy(list(masked_seqs[i]))
257
+ recovery_tok = deepcopy(masked_toks[i])
258
+
259
+ recovery_tok[j] = idx
260
+ recovery_seq[j-1] = idx_to_tok[idx]
261
+
262
+ recovered_tok_i.append(recovery_tok)
263
+ recovered_sequence_i.append(''.join(recovery_seq))
264
+
265
+ recovered_sequences.extend(recovered_sequence_i)
266
+ recovered_toks.extend(recovered_tok_i)
267
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
268
+
269
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
270
+ # Only remain the AGCT logits
271
+ esm_logits = esm_logits[:,:,3:7]
272
+ # Get the predicted tokens using argmax
273
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
274
+
275
+ batch_size, seq_len, vocab_size = esm_logits.size()
276
+ if exclude_low_prob: min_prob = 1 / vocab_size
277
+ # Initialize an empty list to store the recovered sequences
278
+ recovered_sequences, recovered_toks = [], []
279
+
280
+ for i in range(batch_size):
281
+ recovered_sequence_i, recovered_tok_i = [], []
282
+ recovered_masked_num = 0
283
+ for j in range(seq_len):
284
+ if masked_toks[i][j] == 8:
285
+ ### Sample M recovery sequences using the logits
286
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
287
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
288
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
289
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
290
+
291
+ ### 有放回抽样
292
+ max_retries = 5
293
+ retries = 0
294
+ success = False
295
+
296
+ while retries < max_retries and not success:
297
+ try:
298
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
299
+ success = True # 设置成功标志
300
+ except ValueError as e:
301
+ retries += 1
302
+ st.write(f"Attempt {retries} failed with error: {e}")
303
+ if retries >= max_retries:
304
+ st.write("Max retries reached. Skipping this iteration.")
305
+
306
+ ### recovery to sequence
307
+
308
+ if recovered_masked_num == 0:
309
+ if retries < max_retries:
310
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
311
+ recovery_seq = deepcopy(list(masked_seqs[i]))
312
+ recovery_tok = deepcopy(masked_toks[i])
313
+
314
+ recovery_tok[j] = idx
315
+ recovery_seq[j-1] = idx_to_tok[idx]
316
+
317
+ recovered_tok_i.append(recovery_tok)
318
+ recovered_sequence_i.append(''.join(recovery_seq))
319
+
320
+ elif recovered_masked_num > 0:
321
+ if retries < max_retries:
322
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
323
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
324
+
325
+ recovery_seq_temp = list(recovery_seq)
326
+ recovery_tok[j] = idx
327
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
328
+
329
+ recovered_tok_i.append(recovery_tok)
330
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
331
+
332
+ recovered_masked_num += 1
333
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
334
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
335
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
336
+
337
+ recovered_sequences.extend(recovered_sequence_i)
338
+ recovered_toks.extend(recovered_tok_i)
339
+
340
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
341
+
342
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
343
+
344
+ def mismatched_positions(s1, s2):
345
+ # 这个函数假定两个字符串的长度相同。
346
+ """Return the number of positions where two strings differ."""
347
+
348
+ # The number of mismatches will be the sum of positions where characters are not the same
349
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
350
+
351
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
352
+ seen = {}
353
+ unique_seqs = []
354
+ unique_probs = []
355
+ unique_logits = []
356
+
357
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
358
+ if seq not in seen:
359
+ unique_seqs.append(seq)
360
+ unique_probs.append(prob)
361
+ unique_logits.append(logit)
362
+ seen[seq] = True
363
+
364
+ return unique_seqs, unique_probs, unique_logits
365
+
366
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
367
+ seen = {}
368
+ unique_seqs = []
369
+ unique_probs = []
370
+
371
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
372
+ if seq not in seen:
373
+ unique_seqs.append(seq)
374
+ unique_probs.append(prob)
375
+ seen[seq] = True
376
+
377
+ return unique_seqs, unique_probs
378
+
379
+ def mutated_seq(wt_seq, wt_label):
380
+ wt_seq = '!'+ wt_seq
381
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
382
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
383
+
384
+ st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
385
+ st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
386
+
387
+ # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
388
+ # pbar = tqdm(total=n_mut)
389
+ mutated_seqs = []
390
+ i = 1
391
+ # pbar = st.progress(i, text="mutated number of sequence")
392
+ while i <= n_mut:
393
+ if i == 1: seeds_ep = [wt_seq[1:]]
394
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
395
+ for seed in seeds_ep:
396
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
397
+
398
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
399
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
400
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
401
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
402
+
403
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
404
+ filtered_mut_seqs = []
405
+ filtered_mut_probs = []
406
+ filtered_mut_logits = []
407
+ if mut_by_prob:
408
+ for z in range(len(mut_seqs)):
409
+ if mutate2stronger:
410
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
411
+ filtered_mut_seqs.append(mut_seqs[z])
412
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
413
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
414
+ else:
415
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
416
+ filtered_mut_seqs.append(mut_seqs[z])
417
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
418
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
419
+ else:
420
+ for z in range(len(mut_seqs)):
421
+ if mutate2stronger:
422
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
423
+ filtered_mut_seqs.append(mut_seqs[z])
424
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
425
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
426
+ else:
427
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
428
+ filtered_mut_seqs.append(mut_seqs[z])
429
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
430
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
431
+
432
+
433
+
434
+ ### Save
435
+ seeds_next_ep.extend(filtered_mut_seqs)
436
+ seeds_probs_next_ep.extend(filtered_mut_probs)
437
+ seeds_logits_next_ep.extend(filtered_mut_logits)
438
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
439
+
440
+ ### Sampling based on prob
441
+ if len(seeds_next_ep) > n_sampling_designs_ep:
442
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
443
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
444
+
445
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
446
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
447
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
448
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
449
+
450
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
451
+
452
+ seeds_ep = seeds_next_ep
453
+ i += 1
454
+ # pbar.update(1)
455
+ # pbar.progress(i/n_mut, text="Mutating")
456
+ # pbar.close()
457
+ # st.success('Done', icon="✅")
458
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
459
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
460
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
461
+ return mutated_seqs
462
+
463
+ def read_raw(raw_input):
464
+ ids = []
465
+ sequences = []
466
+
467
+ file = StringIO(raw_input)
468
+ for record in SeqIO.parse(file, "fasta"):
469
+
470
+ # 检查序列是否只包含A, G, C, T
471
+ sequence = str(record.seq.back_transcribe()).upper()
472
+ if not set(sequence).issubset(set("AGCT")):
473
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
474
+ continue
475
+
476
+ # 将符合条件的序列添加到列表中
477
+ ids.append(record.id)
478
+ sequences.append(sequence)
479
+
480
+ return ids, sequences
481
+
482
+ def predict_raw(raw_input):
483
+ model.eval()
484
+ # st.write(model)
485
+ # st.write('====Parse Input====')
486
+ ids, seqs = read_raw(raw_input)
487
+
488
+ # st.write('====Predict====')
489
+ res_pd = pd.DataFrame()
490
+ for wt_seq, wt_id in zip(seqs, ids):
491
+ # try:
492
+ res = mutated_seq(wt_seq, wt_id)
493
+ res_pd.append(res)
494
+ # except:
495
+ # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
496
+ st.write(res_pd)
497
+ return res_pd
498
+
499
+ global model, device
500
+ device = "cpu"
501
+ state_dict = torch.load('model.pt', map_location=torch.device(device))
502
+ new_state_dict = OrderedDict()
503
+
504
+ for k, v in state_dict.items():
505
+ name = k.replace('module.','')
506
+ new_state_dict[name] = v
507
+
508
+ model = CNN_linear().to(device)
509
+ model.load_state_dict(new_state_dict, strict = False)
510
+
511
+ # Run
512
+ if st.button("Predict and Mutate"):
513
+ if uploaded:
514
+ result = predict_raw(uploaded.getvalue().decode())
515
+ else:
516
+ result = predict_raw(seq)
517
+
518
+ result_file = result.to_csv(index=False)
519
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
520
+ st.dataframe(result)