a96123155 commited on
Commit
3ebce2f
·
1 Parent(s): e6f35a0
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +0 -520
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py DELETED
@@ -1,520 +0,0 @@
1
- import streamlit as st
2
- from io import StringIO
3
- from Bio import SeqIO
4
-
5
- import numpy as np
6
- import os
7
- import pandas as pd
8
- import random
9
- import torch
10
- import torch.nn as nn
11
- import torch.nn.functional as F
12
- from collections import Counter, OrderedDict
13
- from copy import deepcopy
14
- from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
15
- from esm.data import *
16
- from esm.model.esm2 import ESM2
17
- from torch import nn
18
- from torch.nn import Linear
19
- from torch.nn.utils.rnn import pad_sequence
20
- from torch.utils.data import Dataset, DataLoader
21
- seed = 19961231
22
- random.seed(seed)
23
- np.random.seed(seed)
24
- torch.manual_seed(seed)
25
-
26
-
27
- st.title("IRES-LM prediction and mutation")
28
-
29
- # Input sequence
30
- st.subheader("Input sequence")
31
-
32
- seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
33
- st.subheader("Upload sequence file")
34
- uploaded = st.file_uploader("Sequence file in FASTA format")
35
-
36
- # augments
37
- global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
38
- output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
39
- start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
40
- end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
41
- mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
42
- transform_type = st.selectbox("Type of probability transformation",
43
- ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
44
- index=2)
45
- mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
46
- n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
47
- n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
48
- n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
49
- n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
50
- mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
51
-
52
- if not mut_by_prob and transform_type != '':
53
- st.write("--transform_type must be '' when --mut_by_prob is False")
54
- transform_type = ''
55
-
56
- global model, device
57
- device = "cpu"
58
- state_dict = torch.load('model.pt', map_location=torch.device(device))
59
- new_state_dict = OrderedDict()
60
-
61
- for k, v in state_dict.items():
62
- name = k.replace('module.','')
63
- new_state_dict[name] = v
64
-
65
- model = CNN_linear().to(device)
66
- model.load_state_dict(new_state_dict, strict = False)
67
-
68
- global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
69
-
70
- epochs = 5
71
- layers = 6
72
- heads = 16
73
- embed_dim = 128
74
- batch_toks = 4096
75
- fc_node = 64
76
- dropout_prob = 0.5
77
- folds = 10
78
- repr_layers = [-1]
79
- include = ["mean"]
80
- truncate = True
81
- finetune = False
82
- return_contacts = False
83
- return_representation = False
84
-
85
- global tok_to_idx, idx_to_tok, mask_toks_id
86
- alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
87
- assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
88
-
89
- # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
90
- tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
91
- idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
92
- # st.write(tok_to_idx)
93
- mask_toks_id = 8
94
-
95
- global w1, w2, w3
96
- w1, w2, w3 = 1, 1, 100
97
-
98
- class CNN_linear(nn.Module):
99
- def __init__(self):
100
- super(CNN_linear, self).__init__()
101
-
102
- self.esm2 = ESM2(num_layers = layers,
103
- embed_dim = embed_dim,
104
- attention_heads = heads,
105
- alphabet = alphabet)
106
-
107
- self.dropout = nn.Dropout(dropout_prob)
108
- self.relu = nn.ReLU()
109
- self.flatten = nn.Flatten()
110
- self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
111
- self.output = nn.Linear(in_features = fc_node, out_features = 2)
112
-
113
- def predict(self, tokens):
114
-
115
- x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
116
- x_cls = x["representations"][layers][:, 0]
117
-
118
- o = self.fc(x_cls)
119
- o = self.relu(o)
120
- o = self.dropout(o)
121
- o = self.output(o)
122
-
123
- y_prob = torch.softmax(o, dim = 1)
124
- y_pred = torch.argmax(y_prob, dim = 1)
125
-
126
- if transform_type:
127
- y_prob_transformed = prob_transform(y_prob[:,1])
128
- return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
129
- else:
130
- return y_prob[:,1], y_pred, x['logits'], o[:,1]
131
-
132
- def forward(self, x1, x2):
133
- logit_1, repr_1 = self.predict(x1)
134
- logit_2, repr_2 = self.predict(x2)
135
- return (logit_1, logit_2), (repr_1, repr_2)
136
-
137
- def prob_transform(prob, **kwargs): # Logits
138
- """
139
- Transforms probability values based on the specified method.
140
-
141
- :param prob: torch.Tensor, the input probabilities to be transformed
142
- :param transform_type: str, the type of transformation to be applied
143
- :param kwargs: additional parameters for transformations
144
- :return: torch.Tensor, transformed probabilities
145
- """
146
-
147
- if transform_type == 'sigmoid':
148
- x0 = kwget('x0', 0.5)
149
- k = kwget('k', 10.0)
150
- prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
151
-
152
- elif transform_type == 'logit':
153
- # Adding a small value to avoid log(0) and log(1)
154
- prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
155
-
156
- elif transform_type == 'power_law':
157
- gamma = kwget('gamma', 2.0)
158
- prob_transformed = torch.pow(prob, gamma)
159
-
160
- elif transform_type == 'tanh':
161
- k = kwget('k', 2.0)
162
- prob_transformed = torch.tanh(k * prob)
163
-
164
- return prob_transformed
165
-
166
- def random_replace(sequence, continuous_replace=False):
167
- if end_nt_position == -1: end_nt_position = len(sequence)
168
- if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
169
- # raise ValueError("Invalid start/end positions")
170
- st.write("Invalid start/end positions")
171
- start_nt_position, end_nt_position = 0, -1
172
-
173
- # 将序列切片成三部分:替换区域前、替换区域、替换区域后
174
- pre_segment = sequence[:start_nt_position]
175
- target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
176
- post_segment = sequence[end_nt_position + 1:]
177
-
178
- if not continuous_replace:
179
- # 随机替换目标片段的mlm_tok_num个位置
180
- indices = random.sample(range(len(target_segment)), mlm_tok_num)
181
- for idx in indices:
182
- target_segment[idx] = '*'
183
- else:
184
- # 在目标片段连续替换mlm_tok_num个位置
185
- max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
186
- if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
187
- return target_segment
188
- start_idx = random.randint(0, max_start_idx)
189
- for idx in range(start_idx, start_idx + mlm_tok_num):
190
- target_segment[idx] = '*'
191
-
192
- # 合并并返回最终的序列
193
- return ''.join([pre_segment] + target_segment + [post_segment])
194
-
195
-
196
- def mlm_seq(seq):
197
- seq_token, masked_sequence_token = [7],[7]
198
- seq_token += [tok_to_idx[token] for token in seq]
199
-
200
- masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
201
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
202
-
203
- return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
204
-
205
- def batch_mlm_seq(seq_list, continuous_replace = False):
206
- batch_seq = []
207
- batch_masked_seq = []
208
- batch_seq_token_list = []
209
- batch_masked_seq_token_list = []
210
-
211
- for i, seq in enumerate(seq_list):
212
- seq_token, masked_seq_token = [7], [7]
213
- seq_token += [tok_to_idx[token] for token in seq]
214
-
215
- masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
216
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
217
-
218
- batch_seq.append(seq)
219
- batch_masked_seq.append(masked_seq)
220
-
221
- batch_seq_token_list.append(seq_token)
222
- batch_masked_seq_token_list.append(masked_seq_token)
223
-
224
- return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
225
-
226
- def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
227
- # Only remain the AGCT logits
228
- esm_logits = esm_logits[:,:,3:7]
229
- # Get the predicted tokens using argmax
230
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
231
-
232
- batch_size, seq_len, vocab_size = esm_logits.size()
233
- if exclude_low_prob: min_prob = 1 / vocab_size
234
- # Initialize an empty list to store the recovered sequences
235
- recovered_sequences, recovered_toks = [], []
236
-
237
- for i in range(batch_size):
238
- recovered_sequence_i, recovered_tok_i = [], []
239
- for j in range(seq_len):
240
- if masked_toks[i][j] == 8:
241
- st.write(i,j)
242
- ### Sample M recovery sequences using the logits
243
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
244
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
245
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
246
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
247
-
248
- ### 有放回抽样
249
- max_retries = 5
250
- retries = 0
251
- success = False
252
-
253
- while retries < max_retries and not success:
254
- try:
255
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
256
- success = True # 设置成功标志
257
- except ValueError as e:
258
- retries += 1
259
- st.write(f"Attempt {retries} failed with error: {e}")
260
- if retries >= max_retries:
261
- st.write("Max retries reached. Skipping this iteration.")
262
-
263
- ### recovery to sequence
264
- if retries < max_retries:
265
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
266
- recovery_seq = deepcopy(list(masked_seqs[i]))
267
- recovery_tok = deepcopy(masked_toks[i])
268
-
269
- recovery_tok[j] = idx
270
- recovery_seq[j-1] = idx_to_tok[idx]
271
-
272
- recovered_tok_i.append(recovery_tok)
273
- recovered_sequence_i.append(''.join(recovery_seq))
274
-
275
- recovered_sequences.extend(recovered_sequence_i)
276
- recovered_toks.extend(recovered_tok_i)
277
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
278
-
279
- def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
280
- # Only remain the AGCT logits
281
- esm_logits = esm_logits[:,:,3:7]
282
- # Get the predicted tokens using argmax
283
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
284
-
285
- batch_size, seq_len, vocab_size = esm_logits.size()
286
- if exclude_low_prob: min_prob = 1 / vocab_size
287
- # Initialize an empty list to store the recovered sequences
288
- recovered_sequences, recovered_toks = [], []
289
-
290
- for i in range(batch_size):
291
- recovered_sequence_i, recovered_tok_i = [], []
292
- recovered_masked_num = 0
293
- for j in range(seq_len):
294
- if masked_toks[i][j] == 8:
295
- ### Sample M recovery sequences using the logits
296
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
297
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
298
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
299
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
300
-
301
- ### 有放回抽样
302
- max_retries = 5
303
- retries = 0
304
- success = False
305
-
306
- while retries < max_retries and not success:
307
- try:
308
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
309
- success = True # 设置成功标志
310
- except ValueError as e:
311
- retries += 1
312
- st.write(f"Attempt {retries} failed with error: {e}")
313
- if retries >= max_retries:
314
- st.write("Max retries reached. Skipping this iteration.")
315
-
316
- ### recovery to sequence
317
-
318
- if recovered_masked_num == 0:
319
- if retries < max_retries:
320
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
321
- recovery_seq = deepcopy(list(masked_seqs[i]))
322
- recovery_tok = deepcopy(masked_toks[i])
323
-
324
- recovery_tok[j] = idx
325
- recovery_seq[j-1] = idx_to_tok[idx]
326
-
327
- recovered_tok_i.append(recovery_tok)
328
- recovered_sequence_i.append(''.join(recovery_seq))
329
-
330
- elif recovered_masked_num > 0:
331
- if retries < max_retries:
332
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
333
- for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
334
-
335
- recovery_seq_temp = list(recovery_seq)
336
- recovery_tok[j] = idx
337
- recovery_seq_temp[j-1] = idx_to_tok[idx]
338
-
339
- recovered_tok_i.append(recovery_tok)
340
- recovered_sequence_i.append(''.join(recovery_seq_temp))
341
-
342
- recovered_masked_num += 1
343
- recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
344
- recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
345
- recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
346
-
347
- recovered_sequences.extend(recovered_sequence_i)
348
- recovered_toks.extend(recovered_tok_i)
349
-
350
- recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
351
-
352
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
353
-
354
- def mismatched_positions(s1, s2):
355
- # 这个函数假定两个字符串的长度相同。
356
- """Return the number of positions where two strings differ."""
357
-
358
- # The number of mismatches will be the sum of positions where characters are not the same
359
- return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
360
-
361
- def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
362
- seen = {}
363
- unique_seqs = []
364
- unique_probs = []
365
- unique_logits = []
366
-
367
- for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
368
- if seq not in seen:
369
- unique_seqs.append(seq)
370
- unique_probs.append(prob)
371
- unique_logits.append(logit)
372
- seen[seq] = True
373
-
374
- return unique_seqs, unique_probs, unique_logits
375
-
376
- def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
377
- seen = {}
378
- unique_seqs = []
379
- unique_probs = []
380
-
381
- for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
382
- if seq not in seen:
383
- unique_seqs.append(seq)
384
- unique_probs.append(prob)
385
- seen[seq] = True
386
-
387
- return unique_seqs, unique_probs
388
-
389
- def mutated_seq(wt_seq, wt_label):
390
- wt_seq = '!'+ wt_seq
391
- wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
392
- wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
393
- st.write('Wild Type: Length')
394
- st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
395
- st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
396
- st.write('sdafdasWild Type: Length')
397
- # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
398
- # pbar = tqdm(total=n_mut)
399
- mutated_seqs = []
400
- i = 1
401
- # pbar = st.progress(i, text="mutated number of sequence")
402
- while i <= n_mut:
403
- if i == 1: seeds_ep = [wt_seq[1:]]
404
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
405
- for seed in seeds_ep:
406
- seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
407
-
408
- seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
409
- _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
410
- mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
411
- mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
412
-
413
- ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
414
- filtered_mut_seqs = []
415
- filtered_mut_probs = []
416
- filtered_mut_logits = []
417
- if mut_by_prob:
418
- for z in range(len(mut_seqs)):
419
- if mutate2stronger:
420
- if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
421
- filtered_mut_seqs.append(mut_seqs[z])
422
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
423
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
424
- else:
425
- if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
426
- filtered_mut_seqs.append(mut_seqs[z])
427
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
428
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
429
- else:
430
- for z in range(len(mut_seqs)):
431
- if mutate2stronger:
432
- if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
433
- filtered_mut_seqs.append(mut_seqs[z])
434
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
435
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
436
- else:
437
- if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
438
- filtered_mut_seqs.append(mut_seqs[z])
439
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
440
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
441
-
442
-
443
-
444
- ### Save
445
- seeds_next_ep.extend(filtered_mut_seqs)
446
- seeds_probs_next_ep.extend(filtered_mut_probs)
447
- seeds_logits_next_ep.extend(filtered_mut_logits)
448
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
449
-
450
- ### Sampling based on prob
451
- if len(seeds_next_ep) > n_sampling_designs_ep:
452
- seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
453
- seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
454
-
455
- seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
456
- seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
457
- seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
458
- seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
459
-
460
- mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
461
-
462
- seeds_ep = seeds_next_ep
463
- i += 1
464
- # pbar.update(1)
465
- # pbar.progress(i/n_mut, text="Mutating")
466
- # pbar.close()
467
- # st.success('Done', icon="✅")
468
- mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
469
- mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
470
- mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
471
- return mutated_seqs
472
-
473
- def read_raw(raw_input):
474
- ids = []
475
- sequences = []
476
-
477
- file = StringIO(raw_input)
478
- for record in SeqIO.parse(file, "fasta"):
479
-
480
- # 检查序列是否只包含A, G, C, T
481
- sequence = str(record.seq.back_transcribe()).upper()
482
- if not set(sequence).issubset(set("AGCT")):
483
- st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
484
- continue
485
-
486
- # 将符合条件的序列添加到列表中
487
- ids.append(record.id)
488
- sequences.append(sequence)
489
-
490
- return ids, sequences
491
-
492
- def predict_raw(raw_input):
493
- model.eval()
494
- # st.write(model)
495
- # st.write('====Parse Input====')
496
- ids, seqs = read_raw(raw_input)
497
-
498
- # st.write('====Predict====')
499
- res_pd = pd.DataFrame()
500
- for wt_seq, wt_id in zip(seqs, ids):
501
- # try:
502
- st.write(wt_id, wt_seq)
503
- res = mutated_seq(wt_seq, wt_id)
504
- st.write(res)
505
- res_pd.append(res)
506
- # except:
507
- # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
508
- st.write(res_pd)
509
- return res_pd
510
-
511
- # Run
512
- if st.button("Predict and Mutate"):
513
- if uploaded:
514
- result = predict_raw(uploaded.getvalue().decode())
515
- else:
516
- result = predict_raw(seq)
517
-
518
- result_file = result.to_csv(index=False)
519
- st.download_button("Download", result_file, file_name=output_filename+".csv")
520
- st.dataframe(result)