a96123155 commited on
Commit
ea6da00
·
1 Parent(s): 971b706
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +551 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import StringIO
3
+ from Bio import SeqIO
4
+
5
+ st.title("IRES-LM prediction and mutation")
6
+
7
+ # Input sequence
8
+ st.subheader("Input sequence")
9
+
10
+ seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
11
+ st.subheader("Upload sequence file")
12
+ uploaded = st.file_uploader("Sequence file in FASTA format")
13
+
14
+ # augments
15
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
16
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
17
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
18
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
19
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
20
+ transform_type = st.selectbox("Type of probability transformation",
21
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
22
+ index=2)
23
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
24
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
25
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
26
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
27
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
28
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
29
+
30
+ if not mut_by_prob and transform_type != '':
31
+ st.write("--transform_type must be '' when --mut_by_prob is False")
32
+ transform_type = ''
33
+
34
+ global model
35
+ state_dict = torch.load('model.pt', map_location=torch.device(device))
36
+ new_state_dict = OrderedDict()
37
+
38
+ for k, v in state_dict.items():
39
+ name = k.replace('module.','')
40
+ new_state_dict[name] = v
41
+
42
+ model = CNN_linear().to(device)
43
+ model.load_state_dict(new_state_dict, strict = False)
44
+
45
+ # Import necessary libraries
46
+ # import matplotlib
47
+ # import matplotlib.pyplot as plt
48
+ import numpy as np
49
+ import os
50
+ import pandas as pd
51
+ # import pathlib
52
+ import random
53
+ # import scanpy as sc
54
+ # import seaborn as sns
55
+ import torch
56
+ import torch.nn as nn
57
+ import torch.nn.functional as F
58
+ # from argparse import Namespace
59
+ from collections import Counter, OrderedDict
60
+ from copy import deepcopy
61
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
62
+ from esm.data import *
63
+ from esm.model.esm2 import ESM2
64
+ # from sklearn import preprocessing
65
+ # from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
66
+ # precision_recall_fscore_support,
67
+ # precision_recall_curve, classification_report,
68
+ # roc_auc_score, average_precision_score,
69
+ # precision_score, recall_score, f1_score,
70
+ # accuracy_score)
71
+ # from sklearn.model_selection import StratifiedKFold
72
+ # from sklearn.utils import class_weight
73
+ # from scipy.stats import spearmanr, pearsonr
74
+ from torch import nn
75
+ from torch.nn import Linear
76
+ from torch.nn.utils.rnn import pad_sequence
77
+ from torch.utils.data import Dataset, DataLoader
78
+ from tqdm import tqdm, trange
79
+
80
+ # Set global variables
81
+ # matplotlib.rcParams.update({'font.size': 7})
82
+ seed = 19961231
83
+ random.seed(seed)
84
+ np.random.seed(seed)
85
+ torch.manual_seed(seed)
86
+ # torch.cuda.manual_seed(seed)
87
+ # torch.backends.cudnn.deterministic = True
88
+ # torch.backends.cudnn.benchmark = False
89
+
90
+
91
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
92
+
93
+ epochs = 5
94
+ layers = 6
95
+ heads = 16
96
+ embed_dim = 128
97
+ batch_toks = 4096
98
+ fc_node = 64
99
+ dropout_prob = 0.5
100
+ folds = 10
101
+ repr_layers = [-1]
102
+ include = ["mean"]
103
+ truncate = True
104
+ finetune = False
105
+ return_contacts = False
106
+ return_representation = False
107
+
108
+ device = "cpu"
109
+
110
+ global tok_to_idx, idx_to_tok, mask_toks_id
111
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
112
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
113
+
114
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
115
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
116
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
117
+ # st.write(tok_to_idx)
118
+ mask_toks_id = 8
119
+
120
+ global w1, w2, w3
121
+ w1, w2, w3 = 1, 1, 100
122
+
123
+ class CNN_linear(nn.Module):
124
+ def __init__(self):
125
+ super(CNN_linear, self).__init__()
126
+
127
+ self.esm2 = ESM2(num_layers = layers,
128
+ embed_dim = embed_dim,
129
+ attention_heads = heads,
130
+ alphabet = alphabet)
131
+
132
+ self.dropout = nn.Dropout(dropout_prob)
133
+ self.relu = nn.ReLU()
134
+ self.flatten = nn.Flatten()
135
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
136
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
137
+
138
+ def predict(self, tokens):
139
+
140
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
141
+ x_cls = x["representations"][layers][:, 0]
142
+
143
+ o = self.fc(x_cls)
144
+ o = self.relu(o)
145
+ o = self.dropout(o)
146
+ o = self.output(o)
147
+
148
+ y_prob = torch.softmax(o, dim = 1)
149
+ y_pred = torch.argmax(y_prob, dim = 1)
150
+
151
+ if transform_type:
152
+ y_prob_transformed = prob_transform(y_prob[:,1])
153
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
154
+ else:
155
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
156
+
157
+ def forward(self, x1, x2):
158
+ logit_1, repr_1 = self.predict(x1)
159
+ logit_2, repr_2 = self.predict(x2)
160
+ return (logit_1, logit_2), (repr_1, repr_2)
161
+
162
+ def prob_transform(prob, **kwargs): # Logits
163
+ """
164
+ Transforms probability values based on the specified method.
165
+
166
+ :param prob: torch.Tensor, the input probabilities to be transformed
167
+ :param transform_type: str, the type of transformation to be applied
168
+ :param kwargs: additional parameters for transformations
169
+ :return: torch.Tensor, transformed probabilities
170
+ """
171
+
172
+ if transform_type == 'sigmoid':
173
+ x0 = kwget('x0', 0.5)
174
+ k = kwget('k', 10.0)
175
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
176
+
177
+ elif transform_type == 'logit':
178
+ # Adding a small value to avoid log(0) and log(1)
179
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
180
+
181
+ elif transform_type == 'power_law':
182
+ gamma = kwget('gamma', 2.0)
183
+ prob_transformed = torch.pow(prob, gamma)
184
+
185
+ elif transform_type == 'tanh':
186
+ k = kwget('k', 2.0)
187
+ prob_transformed = torch.tanh(k * prob)
188
+
189
+ return prob_transformed
190
+
191
+ def random_replace(sequence, continuous_replace=False):
192
+ if end_nt_position == -1: end_nt_position = len(sequence)
193
+ if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
194
+ # raise ValueError("Invalid start/end positions")
195
+ st.write("Invalid start/end positions")
196
+ start_nt_position, end_nt_position = 0, -1
197
+
198
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
199
+ pre_segment = sequence[:start_nt_position]
200
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
201
+ post_segment = sequence[end_nt_position + 1:]
202
+
203
+ if not continuous_replace:
204
+ # 随机替换目标片段的mlm_tok_num个位置
205
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
206
+ for idx in indices:
207
+ target_segment[idx] = '*'
208
+ else:
209
+ # 在目标片段连续替换mlm_tok_num个位置
210
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
211
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
212
+ return target_segment
213
+ start_idx = random.randint(0, max_start_idx)
214
+ for idx in range(start_idx, start_idx + mlm_tok_num):
215
+ target_segment[idx] = '*'
216
+
217
+ # 合并并返回最终的序列
218
+ return ''.join([pre_segment] + target_segment + [post_segment])
219
+
220
+
221
+ def mlm_seq(seq):
222
+ seq_token, masked_sequence_token = [7],[7]
223
+ seq_token += [tok_to_idx[token] for token in seq]
224
+
225
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
226
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
227
+
228
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
229
+
230
+ def batch_mlm_seq(seq_list, continuous_replace = False):
231
+ batch_seq = []
232
+ batch_masked_seq = []
233
+ batch_seq_token_list = []
234
+ batch_masked_seq_token_list = []
235
+
236
+ for i, seq in enumerate(seq_list):
237
+ seq_token, masked_seq_token = [7], [7]
238
+ seq_token += [tok_to_idx[token] for token in seq]
239
+
240
+ masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
241
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
242
+
243
+ batch_seq.append(seq)
244
+ batch_masked_seq.append(masked_seq)
245
+
246
+ batch_seq_token_list.append(seq_token)
247
+ batch_masked_seq_token_list.append(masked_seq_token)
248
+
249
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
250
+
251
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
252
+ # Only remain the AGCT logits
253
+ esm_logits = esm_logits[:,:,3:7]
254
+ # Get the predicted tokens using argmax
255
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
256
+
257
+ batch_size, seq_len, vocab_size = esm_logits.size()
258
+ if exclude_low_prob: min_prob = 1 / vocab_size
259
+ # Initialize an empty list to store the recovered sequences
260
+ recovered_sequences, recovered_toks = [], []
261
+
262
+ for i in range(batch_size):
263
+ recovered_sequence_i, recovered_tok_i = [], []
264
+ for j in range(seq_len):
265
+ if masked_toks[i][j] == 8:
266
+ st.write(i,j)
267
+ ### Sample M recovery sequences using the logits
268
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
269
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
270
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
271
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
272
+
273
+ ### 有放回抽样
274
+ max_retries = 5
275
+ retries = 0
276
+ success = False
277
+
278
+ while retries < max_retries and not success:
279
+ try:
280
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
281
+ success = True # 设置成功标志
282
+ except ValueError as e:
283
+ retries += 1
284
+ st.write(f"Attempt {retries} failed with error: {e}")
285
+ if retries >= max_retries:
286
+ st.write("Max retries reached. Skipping this iteration.")
287
+
288
+ ### recovery to sequence
289
+ if retries < max_retries:
290
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
291
+ recovery_seq = deepcopy(list(masked_seqs[i]))
292
+ recovery_tok = deepcopy(masked_toks[i])
293
+
294
+ recovery_tok[j] = idx
295
+ recovery_seq[j-1] = idx_to_tok[idx]
296
+
297
+ recovered_tok_i.append(recovery_tok)
298
+ recovered_sequence_i.append(''.join(recovery_seq))
299
+
300
+ recovered_sequences.extend(recovered_sequence_i)
301
+ recovered_toks.extend(recovered_tok_i)
302
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
303
+
304
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
305
+ # Only remain the AGCT logits
306
+ esm_logits = esm_logits[:,:,3:7]
307
+ # Get the predicted tokens using argmax
308
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
309
+
310
+ batch_size, seq_len, vocab_size = esm_logits.size()
311
+ if exclude_low_prob: min_prob = 1 / vocab_size
312
+ # Initialize an empty list to store the recovered sequences
313
+ recovered_sequences, recovered_toks = [], []
314
+
315
+ for i in range(batch_size):
316
+ recovered_sequence_i, recovered_tok_i = [], []
317
+ recovered_masked_num = 0
318
+ for j in range(seq_len):
319
+ if masked_toks[i][j] == 8:
320
+ ### Sample M recovery sequences using the logits
321
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
322
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
323
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
324
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
325
+
326
+ ### 有放回抽样
327
+ max_retries = 5
328
+ retries = 0
329
+ success = False
330
+
331
+ while retries < max_retries and not success:
332
+ try:
333
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
334
+ success = True # 设置成功标志
335
+ except ValueError as e:
336
+ retries += 1
337
+ st.write(f"Attempt {retries} failed with error: {e}")
338
+ if retries >= max_retries:
339
+ st.write("Max retries reached. Skipping this iteration.")
340
+
341
+ ### recovery to sequence
342
+
343
+ if recovered_masked_num == 0:
344
+ if retries < max_retries:
345
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
346
+ recovery_seq = deepcopy(list(masked_seqs[i]))
347
+ recovery_tok = deepcopy(masked_toks[i])
348
+
349
+ recovery_tok[j] = idx
350
+ recovery_seq[j-1] = idx_to_tok[idx]
351
+
352
+ recovered_tok_i.append(recovery_tok)
353
+ recovered_sequence_i.append(''.join(recovery_seq))
354
+
355
+ elif recovered_masked_num > 0:
356
+ if retries < max_retries:
357
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
358
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
359
+
360
+ recovery_seq_temp = list(recovery_seq)
361
+ recovery_tok[j] = idx
362
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
363
+
364
+ recovered_tok_i.append(recovery_tok)
365
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
366
+
367
+ recovered_masked_num += 1
368
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
369
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
370
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
371
+
372
+ recovered_sequences.extend(recovered_sequence_i)
373
+ recovered_toks.extend(recovered_tok_i)
374
+
375
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
376
+
377
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
378
+
379
+ def mismatched_positions(s1, s2):
380
+ # 这个函数假定两个字符串的长度相同。
381
+ """Return the number of positions where two strings differ."""
382
+
383
+ # The number of mismatches will be the sum of positions where characters are not the same
384
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
385
+
386
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
387
+ seen = {}
388
+ unique_seqs = []
389
+ unique_probs = []
390
+ unique_logits = []
391
+
392
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
393
+ if seq not in seen:
394
+ unique_seqs.append(seq)
395
+ unique_probs.append(prob)
396
+ unique_logits.append(logit)
397
+ seen[seq] = True
398
+
399
+ return unique_seqs, unique_probs, unique_logits
400
+
401
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
402
+ seen = {}
403
+ unique_seqs = []
404
+ unique_probs = []
405
+
406
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
407
+ if seq not in seen:
408
+ unique_seqs.append(seq)
409
+ unique_probs.append(prob)
410
+ seen[seq] = True
411
+
412
+ return unique_seqs, unique_probs
413
+
414
+ def mutated_seq(wt_seq, wt_label):
415
+ wt_seq = '!'+ wt_seq
416
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
417
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
418
+ st.write('Wild Type: Length')
419
+ st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
420
+ st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
421
+ st.write('sdafdasWild Type: Length')
422
+ # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
423
+ # pbar = tqdm(total=n_mut)
424
+ mutated_seqs = []
425
+ i = 1
426
+ # pbar = st.progress(i, text="mutated number of sequence")
427
+ while i <= n_mut:
428
+ if i == 1: seeds_ep = [wt_seq[1:]]
429
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
430
+ for seed in seeds_ep:
431
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
432
+
433
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
434
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
435
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
436
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
437
+
438
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
439
+ filtered_mut_seqs = []
440
+ filtered_mut_probs = []
441
+ filtered_mut_logits = []
442
+ if mut_by_prob:
443
+ for z in range(len(mut_seqs)):
444
+ if mutate2stronger:
445
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
446
+ filtered_mut_seqs.append(mut_seqs[z])
447
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
448
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
449
+ else:
450
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
451
+ filtered_mut_seqs.append(mut_seqs[z])
452
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
453
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
454
+ else:
455
+ for z in range(len(mut_seqs)):
456
+ if mutate2stronger:
457
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
458
+ filtered_mut_seqs.append(mut_seqs[z])
459
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
460
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
461
+ else:
462
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
463
+ filtered_mut_seqs.append(mut_seqs[z])
464
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
465
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
466
+
467
+
468
+
469
+ ### Save
470
+ seeds_next_ep.extend(filtered_mut_seqs)
471
+ seeds_probs_next_ep.extend(filtered_mut_probs)
472
+ seeds_logits_next_ep.extend(filtered_mut_logits)
473
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
474
+
475
+ ### Sampling based on prob
476
+ if len(seeds_next_ep) > n_sampling_designs_ep:
477
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
478
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
479
+
480
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
481
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
482
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
483
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
484
+
485
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
486
+
487
+ seeds_ep = seeds_next_ep
488
+ i += 1
489
+ # pbar.update(1)
490
+ # pbar.progress(i/n_mut, text="Mutating")
491
+ # pbar.close()
492
+ # st.success('Done', icon="✅")
493
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
494
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
495
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
496
+ return mutated_seqs
497
+
498
+ def read_raw(raw_input):
499
+ ids = []
500
+ sequences = []
501
+
502
+ file = StringIO(raw_input)
503
+ for record in SeqIO.parse(file, "fasta"):
504
+
505
+ # 检查序列是否只包含A, G, C, T
506
+ sequence = str(record.seq.back_transcribe()).upper()
507
+ if not set(sequence).issubset(set("AGCT")):
508
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
509
+ continue
510
+
511
+ # 将符合条件的序列添加到列表中
512
+ ids.append(record.id)
513
+ sequences.append(sequence)
514
+
515
+ return ids, sequences
516
+
517
+ def predict_raw(raw_input):
518
+ model.eval()
519
+ # st.write(model)
520
+ # st.write('====Parse Input====')
521
+ ids, seqs = read_raw(raw_input)
522
+
523
+ # st.write('====Predict====')
524
+ res_pd = pd.DataFrame()
525
+ for wt_seq, wt_id in zip(seqs, ids):
526
+ # try:
527
+ st.write(wt_id, wt_seq)
528
+ res = mutated_seq(wt_seq, wt_id)
529
+ st.write(res)
530
+ res_pd.append(res)
531
+ # except:
532
+ # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
533
+ st.write(res_pd)
534
+ return res_pd
535
+
536
+ # Run
537
+ if st.button("Predict and Mutate"):
538
+ if uploaded:
539
+ result = predict_raw(uploaded.getvalue().decode())
540
+ else:
541
+ result = predict_raw(seq)
542
+
543
+ result_file = result.to_csv(index=False)
544
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
545
+ st.dataframe(result)
546
+
547
+
548
+
549
+
550
+
551
+