Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -24,125 +24,128 @@ def get_models(name: str, device: torch.device, offload: bool):
|
|
24 |
|
25 |
|
26 |
class FluxGenerator:
|
27 |
-
def __init__(self
|
28 |
-
self.device = torch.device(
|
29 |
-
self.offload =
|
30 |
-
self.model_name =
|
31 |
self.model, self.ae, self.t5, self.clip = get_models(
|
32 |
-
model_name,
|
33 |
device=self.device,
|
34 |
offload=self.offload,
|
35 |
)
|
36 |
-
self.pulid_model = PuLIDPipeline(self.model,
|
37 |
-
self.pulid_model.load_pretrain(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
_HEADER_ = '''
|
148 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
@@ -169,8 +172,6 @@ If you have any questions or feedbacks, feel free to open a discussion or contac
|
|
169 |
|
170 |
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
171 |
offload: bool = False):
|
172 |
-
generator = FluxGenerator(model_name, device, offload, args)
|
173 |
-
|
174 |
with gr.Blocks() as demo:
|
175 |
gr.Markdown(_HEADER_)
|
176 |
|
@@ -267,7 +268,7 @@ def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_ava
|
|
267 |
label='true CFG')
|
268 |
|
269 |
generate_btn.click(
|
270 |
-
fn=
|
271 |
inputs=[width, height, num_steps, start_step, guidance, seed, prompt, id_image, id_weight, neg_prompt,
|
272 |
true_cfg, timestep_to_start_cfg, max_sequence_length],
|
273 |
outputs=[output_image, seed_output, intermediate_output],
|
@@ -282,7 +283,8 @@ if __name__ == "__main__":
|
|
282 |
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
|
283 |
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
|
284 |
help="currently only support flux-dev")
|
285 |
-
parser.add_argument("--device", type=str, default="cuda"
|
|
|
286 |
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
287 |
parser.add_argument("--port", type=int, default=8080, help="Port to use")
|
288 |
parser.add_argument("--dev", action='store_true', help="Development mode")
|
|
|
24 |
|
25 |
|
26 |
class FluxGenerator:
|
27 |
+
def __init__(self):
|
28 |
+
self.device = torch.device('cuda')
|
29 |
+
self.offload = False
|
30 |
+
self.model_name = 'flux-dev'
|
31 |
self.model, self.ae, self.t5, self.clip = get_models(
|
32 |
+
self.model_name,
|
33 |
device=self.device,
|
34 |
offload=self.offload,
|
35 |
)
|
36 |
+
self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16)
|
37 |
+
self.pulid_model.load_pretrain()
|
38 |
+
|
39 |
+
|
40 |
+
flux_generator = FluxGenerator()
|
41 |
+
|
42 |
+
|
43 |
+
@spaces.GPU
|
44 |
+
def generate_image(
|
45 |
+
width,
|
46 |
+
height,
|
47 |
+
num_steps,
|
48 |
+
start_step,
|
49 |
+
guidance,
|
50 |
+
seed,
|
51 |
+
prompt,
|
52 |
+
id_image=None,
|
53 |
+
id_weight=1.0,
|
54 |
+
neg_prompt="",
|
55 |
+
true_cfg=1.0,
|
56 |
+
timestep_to_start_cfg=1,
|
57 |
+
max_sequence_length=128,
|
58 |
+
):
|
59 |
+
flux_generator.t5.max_length = max_sequence_length
|
60 |
+
|
61 |
+
seed = int(seed)
|
62 |
+
if seed == -1:
|
63 |
+
seed = None
|
64 |
+
|
65 |
+
opts = SamplingOptions(
|
66 |
+
prompt=prompt,
|
67 |
+
width=width,
|
68 |
+
height=height,
|
69 |
+
num_steps=num_steps,
|
70 |
+
guidance=guidance,
|
71 |
+
seed=seed,
|
72 |
+
)
|
73 |
+
|
74 |
+
if opts.seed is None:
|
75 |
+
opts.seed = torch.Generator(device="cpu").seed()
|
76 |
+
print(f"Generating '{opts.prompt}' with seed {opts.seed}")
|
77 |
+
t0 = time.perf_counter()
|
78 |
+
|
79 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
80 |
+
|
81 |
+
if id_image is not None:
|
82 |
+
id_image = resize_numpy_image_long(id_image, 1024)
|
83 |
+
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
|
84 |
+
else:
|
85 |
+
id_embeddings = None
|
86 |
+
uncond_id_embeddings = None
|
87 |
+
|
88 |
+
# prepare input
|
89 |
+
x = get_noise(
|
90 |
+
1,
|
91 |
+
opts.height,
|
92 |
+
opts.width,
|
93 |
+
device=flux_generator.device,
|
94 |
+
dtype=torch.bfloat16,
|
95 |
+
seed=opts.seed,
|
96 |
+
)
|
97 |
+
timesteps = get_schedule(
|
98 |
+
opts.num_steps,
|
99 |
+
x.shape[-1] * x.shape[-2] // 4,
|
100 |
+
shift=True,
|
101 |
+
)
|
102 |
+
|
103 |
+
if flux_generator.offload:
|
104 |
+
flux_generator.t5, flux_generator.clip = flux_generator.t5.to(flux_generator.device), flux_generator.clip.to(flux_generator.device)
|
105 |
+
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=opts.prompt)
|
106 |
+
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=neg_prompt) if use_true_cfg else None
|
107 |
+
|
108 |
+
# offload TEs to CPU, load model to gpu
|
109 |
+
if flux_generator.offload:
|
110 |
+
flux_generator.t5, flux_generator.clip = flux_generator.t5.cpu(), flux_generator.clip.cpu()
|
111 |
+
torch.cuda.empty_cache()
|
112 |
+
flux_generator.model = flux_generator.model.to(flux_generator.device)
|
113 |
+
|
114 |
+
# denoise initial noise
|
115 |
+
x = denoise(
|
116 |
+
flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight,
|
117 |
+
start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg,
|
118 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
119 |
+
neg_txt=inp_neg["txt"] if use_true_cfg else None,
|
120 |
+
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
|
121 |
+
neg_vec=inp_neg["vec"] if use_true_cfg else None,
|
122 |
+
)
|
123 |
+
|
124 |
+
# offload model, load autoencoder to gpu
|
125 |
+
if flux_generator.offload:
|
126 |
+
flux_generator.model.cpu()
|
127 |
+
torch.cuda.empty_cache()
|
128 |
+
flux_generator.ae.decoder.to(x.device)
|
129 |
+
|
130 |
+
# decode latents to pixel space
|
131 |
+
x = unpack(x.float(), opts.height, opts.width)
|
132 |
+
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
|
133 |
+
x = flux_generator.ae.decode(x)
|
134 |
+
|
135 |
+
if flux_generator.offload:
|
136 |
+
flux_generator.ae.decoder.cpu()
|
137 |
+
torch.cuda.empty_cache()
|
138 |
+
|
139 |
+
t1 = time.perf_counter()
|
140 |
+
|
141 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
142 |
+
# bring into PIL format
|
143 |
+
x = x.clamp(-1, 1)
|
144 |
+
# x = embed_watermark(x.float())
|
145 |
+
x = rearrange(x[0], "c h w -> h w c")
|
146 |
+
|
147 |
+
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
148 |
+
return img, str(opts.seed), flux_generator.pulid_model.debug_img_list
|
149 |
|
150 |
_HEADER_ = '''
|
151 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
|
|
172 |
|
173 |
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
174 |
offload: bool = False):
|
|
|
|
|
175 |
with gr.Blocks() as demo:
|
176 |
gr.Markdown(_HEADER_)
|
177 |
|
|
|
268 |
label='true CFG')
|
269 |
|
270 |
generate_btn.click(
|
271 |
+
fn=generate_image,
|
272 |
inputs=[width, height, num_steps, start_step, guidance, seed, prompt, id_image, id_weight, neg_prompt,
|
273 |
true_cfg, timestep_to_start_cfg, max_sequence_length],
|
274 |
outputs=[output_image, seed_output, intermediate_output],
|
|
|
283 |
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
|
284 |
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
|
285 |
help="currently only support flux-dev")
|
286 |
+
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
|
287 |
+
help="Device to use")
|
288 |
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
289 |
parser.add_argument("--port", type=int, default=8080, help="Port to use")
|
290 |
parser.add_argument("--dev", action='store_true', help="Development mode")
|