yanze commited on
Commit
e7d2488
1 Parent(s): 206f164

Update eva_clip/eva_vit_model.py

Browse files
Files changed (1) hide show
  1. eva_clip/eva_vit_model.py +90 -5
eva_clip/eva_vit_model.py CHANGED
@@ -4,14 +4,13 @@
4
  import math
5
  import os
6
  from functools import partial
 
 
7
  import torch
8
  import torch.nn as nn
 
9
  import torch.nn.functional as F
10
- try:
11
- from timm.models.layers import drop_path, to_2tuple, trunc_normal_
12
- except:
13
- from timm.layers import drop_path, to_2tuple, trunc_normal_
14
-
15
  from .transformer import PatchDropout
16
  from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
17
 
@@ -30,6 +29,92 @@ try:
30
  except:
31
  XFORMERS_IS_AVAILBLE = False
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  class DropPath(nn.Module):
34
  """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
35
  """
 
4
  import math
5
  import os
6
  from functools import partial
7
+ from itertools import repeat
8
+ import collections.abc
9
  import torch
10
  import torch.nn as nn
11
+ import warnings
12
  import torch.nn.functional as F
13
+
 
 
 
 
14
  from .transformer import PatchDropout
15
  from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
16
 
 
29
  except:
30
  XFORMERS_IS_AVAILBLE = False
31
 
32
+
33
+ def _ntuple(n):
34
+ def parse(x):
35
+ if isinstance(x, collections.abc.Iterable):
36
+ return x
37
+ return tuple(repeat(x, n))
38
+ return parse
39
+
40
+ to_2tuple = _ntuple(2)
41
+
42
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
43
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
44
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
45
+ def norm_cdf(x):
46
+ # Computes standard normal cumulative distribution function
47
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
48
+
49
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
50
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
51
+ "The distribution of values may be incorrect.",
52
+ stacklevel=2)
53
+
54
+ with torch.no_grad():
55
+ # Values are generated by using a truncated uniform distribution and
56
+ # then using the inverse CDF for the normal distribution.
57
+ # Get upper and lower cdf values
58
+ l = norm_cdf((a - mean) / std)
59
+ u = norm_cdf((b - mean) / std)
60
+
61
+ # Uniformly fill tensor with values from [l, u], then translate to
62
+ # [2l-1, 2u-1].
63
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
64
+
65
+ # Use inverse cdf transform for normal distribution to get truncated
66
+ # standard normal
67
+ tensor.erfinv_()
68
+
69
+ # Transform to proper mean, std
70
+ tensor.mul_(std * math.sqrt(2.))
71
+ tensor.add_(mean)
72
+
73
+ # Clamp to ensure it's in the proper range
74
+ tensor.clamp_(min=a, max=b)
75
+ return tensor
76
+
77
+
78
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
79
+ # type: (Tensor, float, float, float, float) -> Tensor
80
+ r"""Fills the input Tensor with values drawn from a truncated
81
+ normal distribution. The values are effectively drawn from the
82
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
83
+ with values outside :math:`[a, b]` redrawn until they are within
84
+ the bounds. The method used for generating the random values works
85
+ best when :math:`a \leq \text{mean} \leq b`.
86
+ Args:
87
+ tensor: an n-dimensional `torch.Tensor`
88
+ mean: the mean of the normal distribution
89
+ std: the standard deviation of the normal distribution
90
+ a: the minimum cutoff value
91
+ b: the maximum cutoff value
92
+ Examples:
93
+ >>> w = torch.empty(3, 5)
94
+ >>> nn.init.trunc_normal_(w)
95
+ """
96
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
97
+
98
+ def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
99
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
100
+
101
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
102
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
103
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
104
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
105
+ 'survival rate' as the argument.
106
+
107
+ """
108
+ if drop_prob == 0. or not training:
109
+ return x
110
+ keep_prob = 1 - drop_prob
111
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
112
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
113
+ if keep_prob > 0.0 and scale_by_keep:
114
+ random_tensor.div_(keep_prob)
115
+ return x * random_tensor
116
+
117
+
118
  class DropPath(nn.Module):
119
  """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
120
  """