Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import openai | |
from decouple import config | |
import win32com.client | |
import pythoncom | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# Configure OpenAI for speech-to-text | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def process_audio_and_respond( | |
audio, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
if audio is None: | |
return "Please provide an audio input." | |
# Convert speech to text using Whisper | |
audio_file = open(audio, "rb") | |
transcript = openai.Audio.transcribe("whisper-1", audio_file) | |
user_message = transcript["text"] | |
# Prepare messages for Zephyr | |
messages = [{"role": "system", "content": system_message}] | |
for user, assistant in history: | |
if user: | |
messages.append({"role": "user", "content": user}) | |
if assistant: | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": user_message}) | |
# Get response from Zephyr | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
# Convert response to speech | |
pythoncom.CoInitialize() | |
speaker = win32com.client.Dispatch("SAPI.SpVoice") | |
speaker.Speak(response) | |
return user_message, response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
process_audio_and_respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |