Spaces:
Sleeping
Sleeping
from langchain import PromptTemplate, LLMChain | |
import chainlit as cl | |
from custom_llm import CustomLLM | |
from langchain.prompts import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
) | |
template = """ Write a python code for the following problem : | |
{question} | |
Code: | |
""" | |
def factory(): | |
system_message_prompt = SystemMessagePromptTemplate.from_template(template) | |
prompt = ChatPromptTemplate.from_messages([system_message_prompt]) | |
llm = CustomLLM() | |
llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=True,) | |
cl.user_session.set("llm_chain", llm_chain) | |
async def main(message): | |
llm_chain = cl.user_session.get("llm_chain") | |
res = await llm_chain.acall(message.content, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
await cl.Message(content=res["text"]).send() | |
# This will be particularly useful when we want to customize this thing for production. | |
def rename(orig_author): | |
rename_dict = { | |
'LLMChain': 'Scooby' | |
} | |
return rename_dict.get(orig_author, orig_author) | |