Spaces:
Runtime error
Runtime error
File size: 1,522 Bytes
ca94011 8af4edf 2eff088 8af4edf ca94011 8af4edf ca94011 8af4edf 8c60512 0ecea5b 8af4edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
from transformers.activations import get_activation
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM
st.title('GPT2:')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@st.cache(allow_output_mutation=True)
def get_model():
tokenizer = AutoTokenizer.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator")
model = AutoModelForCausalLM.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator")
return model, tokenizer
model, tokenizer = get_model()
g = "life is a"
with st.form(key='my_form'):
prompt = st.text_area(label='Enter sentence', value=g)
submit_button = st.form_submit_button(label='Submit')
if submit_button:
with torch.no_grad():
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(350)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
st.write(best_words) |