import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import tensorflow as tf #maximum number of words in output text # MAX_LEN = 30 title = st.text_input('Enter the seed words', ' ') input_sequence = title number = st.number_input('Insert how many words', 1) MAX_LEN = number if st.button('Submit'): tokenizer = AutoTokenizer.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") model = AutoModelForCausalLM.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator",args={'fp16': False})) inputs = tokenizer.encode(input_sequence, return_tensors='pt') # generate text until the output length (which includes the context length) reaches 50 #greedy_output = GPT2.generate(input_ids, max_length = MAX_LEN) outputs = model(**inputs) print("Output:\n" + 100 * '-') print(outputs) else: st.write(' ') # print("Output:\n" + 100 * '-') # print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')