import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import tensorflow as tf config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=3, inter_op_parallelism_threads=2, allow_soft_placement=True, device_count = {'GPU':1, 'CPU':4}) session = tf.compat.v1.Session(config=config) #for reproducability SEED = 64 #maximum number of words in output text # MAX_LEN = 30 title = st.text_input('Enter the seed words', ' ') input_sequence = title number = st.number_input('Insert how many words', 1) MAX_LEN = number if st.button('Submit'): #get transformers from transformers import TFGPT2LMHeadModel, GPT2Tokenizer tokenizer = AutoTokenizer.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") GPT2 = model = AutoModelForCausalLM.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") import tensorflow as tf tf.random.set_seed(SEED) input_ids = tokenizer.encode(input_sequence, return_tensors='tf') input_ids = tokenizer.encode(input_sequence, return_tensors='tf') # generate text until the output length (which includes the context length) reaches 50 greedy_output = GPT2.generate(input_ids, max_length = MAX_LEN) print("Output:\n" + 100 * '-') print(tokenizer.decode(greedy_output[0], skip_special_tokens = True)) else: st.write(' ') # print("Output:\n" + 100 * '-') # print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')