import streamlit as st import numpy as np import pandas as pd import os import torch import torch.nn as nn from transformers.activations import get_activation from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM st.title('DeepWords') st.text('Still under Construction.') st.text('Tip: Try writing a sentence and making the model predict final word.') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") @st.cache(allow_output_mutation=True) def get_model(): tokenizer = AutoTokenizer.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") model = AutoModelForCausalLM.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") return model, tokenizer model, tokenizer = get_model() #g = c = 5 with st.form(key='my_form'): prompt = st.text_input('Enter sentence:', '') c = st.number_input('Enter Number of words: ', 1) submit_button = st.form_submit_button(label='Submit') if submit_button: with torch.no_grad(): text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(350) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] best_words = ' '.join(best_words[0:c]) final_string = prompt + best_words st.write(final_string)