import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import tensorflow as tf #for reproducability SEED = 64 #maximum number of words in output text # MAX_LEN = 30 title = st.text_input('Enter the seed words', ' ') input_sequence = title number = st.number_input('Insert how many words', 1) MAX_LEN = number if st.button('Submit'): #get transformers from transformers import TFGPT2LMHeadModel, GPT2Tokenizer tokenizer = AutoTokenizer.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") GPT2 = model = AutoModelForCausalLM.from_pretrained("ml6team/gpt-2-medium-conditional-quote-generator") tf.random.set_seed(SEED) input_ids = tokenizer.encode(input_sequence, return_tensors='tf') # generate text until the output length (which includes the context length) reaches 50 #greedy_output = GPT2.generate(input_ids, max_length = MAX_LEN) outputs = model(**inputs) print("Output:\n" + 100 * '-') print(tokenizer.decode(outputs[0], skip_special_tokens = True)) else: st.write(' ') # print("Output:\n" + 100 * '-') # print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')