Spaces:
Sleeping
Sleeping
yash bhaskar
commited on
Commit
·
5fa6e3c
1
Parent(s):
e170b87
Adding RRF code
Browse files
Ranking/RRF/RRF_implementation.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
def load_and_merge_json_files(directory_path):
|
6 |
+
"""
|
7 |
+
Load and merge JSON files from a directory into a single structure, keeping each list from different files separate for each query.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
directory_path (str): Path to the directory containing the JSON files.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
list: Merged list of dictionaries, keeping separate lists for each query.
|
14 |
+
"""
|
15 |
+
merged_queries = defaultdict(list)
|
16 |
+
|
17 |
+
# Iterate through all files in the directory
|
18 |
+
for filename in os.listdir(directory_path):
|
19 |
+
if filename.endswith('.json'):
|
20 |
+
file_path = os.path.join(directory_path, filename)
|
21 |
+
try:
|
22 |
+
with open(file_path, 'r') as f:
|
23 |
+
json_data = json.load(f)
|
24 |
+
|
25 |
+
# For each file, add the lists to the corresponding query
|
26 |
+
for query_data in json_data:
|
27 |
+
for query, rank_list in query_data.items():
|
28 |
+
if isinstance(rank_list, list): # Ensure rank_list is a list
|
29 |
+
merged_queries[query].append(rank_list)
|
30 |
+
else:
|
31 |
+
print(f"Warning: Expected a list for query '{query}' but got {type(rank_list)}")
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error reading {filename}: {e}")
|
34 |
+
|
35 |
+
# Convert defaultdict to a list of dictionaries
|
36 |
+
return [{query: lists} for query, lists in merged_queries.items()]
|
37 |
+
|
38 |
+
def reciprocal_rank_fusion(json_input, K=60, top_n=100):
|
39 |
+
"""
|
40 |
+
Fuse rank from multiple IR systems for multiple queries using Reciprocal Rank Fusion.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
json_input (list): A list of dictionaries where keys are queries, and values are ranked document lists from different systems.
|
44 |
+
K (int): A constant used in the RRF formula (default is 60).
|
45 |
+
top_n (int): Number of top results to return for each query.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
list: A list of dictionaries with each query and its respective fused document rankings.
|
49 |
+
"""
|
50 |
+
query_fusion_results = []
|
51 |
+
|
52 |
+
# Iterate over each query in the JSON input
|
53 |
+
for query_data in json_input:
|
54 |
+
for query, list_of_ranked_docs in query_data.items():
|
55 |
+
rrf_map = defaultdict(float)
|
56 |
+
|
57 |
+
# Fuse rankings for the query using RRF
|
58 |
+
for rank_list in list_of_ranked_docs:
|
59 |
+
for rank, doc in enumerate(rank_list, 1):
|
60 |
+
rrf_map[doc] += 1 / (rank + K)
|
61 |
+
|
62 |
+
# Sort the documents based on RRF scores in descending order
|
63 |
+
sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
|
64 |
+
fused_rankings = [doc for doc, score in sorted_docs[:top_n]] # Keep only top N results
|
65 |
+
|
66 |
+
# Store the results for the current query
|
67 |
+
query_fusion_results.append({query: fused_rankings})
|
68 |
+
|
69 |
+
return query_fusion_results
|
70 |
+
|
71 |
+
def save_to_json(output_data, output_file_path):
|
72 |
+
"""
|
73 |
+
Save the RRF results to a JSON file in the same format as the input.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
output_data (list): The processed data to save.
|
77 |
+
output_file_path (str): Path to the output JSON file.
|
78 |
+
"""
|
79 |
+
with open(output_file_path, 'w') as f:
|
80 |
+
json.dump(output_data, f, indent=2)
|
81 |
+
|
82 |
+
# # Example usage
|
83 |
+
# directory_path = "Modified_1_2" # Replace with your directory path
|
84 |
+
# output_file_path = "Modified_1_2/rrf_1_2_modified.json" # Replace with your desired output file path
|
85 |
+
|
86 |
+
# # Load and merge JSON files
|
87 |
+
# merged_input = load_and_merge_json_files(directory_path)
|
88 |
+
|
89 |
+
# print(merged_input[0]["5xvggq"])
|
90 |
+
|
91 |
+
# # Perform RRF on the merged input, keeping only the top 100 results
|
92 |
+
# combined_results = reciprocal_rank_fusion(merged_input, top_n=100)
|
93 |
+
|
94 |
+
# # Save the combined results to a JSON file
|
95 |
+
# save_to_json(combined_results, output_file_path)
|
96 |
+
|
97 |
+
# print(f"Combined results saved to {output_file_path}")
|
98 |
+
|
99 |
+
|
100 |
+
def reciprocal_rank_fusion_two(rank_list1, rank_list2, K=60, top_n=100):
|
101 |
+
"""
|
102 |
+
Perform Reciprocal Rank Fusion (RRF) for two ranking lists.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
rank_list1 (list): First list of ranked documents.
|
106 |
+
rank_list2 (list): Second list of ranked documents.
|
107 |
+
K (int): A constant used in the RRF formula (default is 60).
|
108 |
+
top_n (int): Number of top results to return (default is 100).
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
list: Combined list of rankings after applying RRF.
|
112 |
+
"""
|
113 |
+
rrf_map = defaultdict(float)
|
114 |
+
|
115 |
+
# Process the first ranking list
|
116 |
+
for rank, doc in enumerate(rank_list1, 1): # Start ranks from 1
|
117 |
+
rrf_map[doc] += 1 / (rank + K)
|
118 |
+
|
119 |
+
# Process the second ranking list
|
120 |
+
for rank, doc in enumerate(rank_list2, 1): # Start ranks from 1
|
121 |
+
rrf_map[doc] += 1 / (rank + K)
|
122 |
+
|
123 |
+
# Sort the documents based on RRF scores in descending order
|
124 |
+
sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
|
125 |
+
|
126 |
+
# Return only the top N results
|
127 |
+
return [doc for doc, score in sorted_docs[:top_n]]
|
128 |
+
|
129 |
+
|
130 |
+
def reciprocal_rank_fusion_three(rank_list1, rank_list2, rank_list3, K=60, top_n=100):
|
131 |
+
"""
|
132 |
+
Perform Reciprocal Rank Fusion (RRF) for three ranking lists.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
rank_list1 (list): First list of ranked documents.
|
136 |
+
rank_list2 (list): Second list of ranked documents.
|
137 |
+
rank_list3 (list): Third list of ranked documents.
|
138 |
+
K (int): A constant used in the RRF formula (default is 60).
|
139 |
+
top_n (int): Number of top results to return (default is 100).
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
list: Combined list of rankings after applying RRF.
|
143 |
+
"""
|
144 |
+
rrf_map = defaultdict(float)
|
145 |
+
|
146 |
+
# Process the first ranking list
|
147 |
+
for rank, doc in enumerate(rank_list1, 1): # Start ranks from 1
|
148 |
+
rrf_map[doc] += 1 / (rank + K)
|
149 |
+
|
150 |
+
# Process the second ranking list
|
151 |
+
for rank, doc in enumerate(rank_list2, 1): # Start ranks from 1
|
152 |
+
rrf_map[doc] += 1 / (rank + K)
|
153 |
+
|
154 |
+
# Process the third ranking list
|
155 |
+
for rank, doc in enumerate(rank_list3, 1): # Start ranks from 1
|
156 |
+
rrf_map[doc] += 1 / (rank + K)
|
157 |
+
|
158 |
+
# Sort the documents based on RRF scores in descending order
|
159 |
+
sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
|
160 |
+
|
161 |
+
# Return only the top N results
|
162 |
+
return [doc for doc, score in sorted_docs[:top_n]]
|
163 |
+
|
164 |
+
|
165 |
+
def reciprocal_rank_fusion_six(rank_list1, rank_list2, rank_list3, rank_list4, rank_list5, rank_list6, K=60, top_n=100):
|
166 |
+
"""
|
167 |
+
Perform Reciprocal Rank Fusion (RRF) for six ranking lists.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
rank_list1 (list): First list of ranked documents.
|
171 |
+
rank_list2 (list): Second list of ranked documents.
|
172 |
+
rank_list3 (list): Third list of ranked documents.
|
173 |
+
rank_list4 (list): Fourth list of ranked documents.
|
174 |
+
rank_list5 (list): Fifth list of ranked documents.
|
175 |
+
rank_list6 (list): Sixth list of ranked documents.
|
176 |
+
K (int): A constant used in the RRF formula (default is 60).
|
177 |
+
top_n (int): Number of top results to return (default is 100).
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
list: Combined list of rankings after applying RRF.
|
181 |
+
"""
|
182 |
+
rrf_map = defaultdict(float)
|
183 |
+
|
184 |
+
# Process each ranking list
|
185 |
+
for rank, doc in enumerate(rank_list1, 1):
|
186 |
+
rrf_map[doc] += 1 / (rank + K)
|
187 |
+
for rank, doc in enumerate(rank_list2, 1):
|
188 |
+
rrf_map[doc] += 1 / (rank + K)
|
189 |
+
for rank, doc in enumerate(rank_list3, 1):
|
190 |
+
rrf_map[doc] += 1 / (rank + K)
|
191 |
+
for rank, doc in enumerate(rank_list4, 1):
|
192 |
+
rrf_map[doc] += 1 / (rank + K)
|
193 |
+
for rank, doc in enumerate(rank_list5, 1):
|
194 |
+
rrf_map[doc] += 1 / (rank + K)
|
195 |
+
for rank, doc in enumerate(rank_list6, 1):
|
196 |
+
rrf_map[doc] += 1 / (rank + K)
|
197 |
+
|
198 |
+
# Sort the documents based on RRF scores in descending order
|
199 |
+
sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
|
200 |
+
|
201 |
+
# Return only the top N results
|
202 |
+
return [doc for doc, score in sorted_docs[:top_n]]
|
203 |
+
|
204 |
+
|
205 |
+
def reciprocal_rank_fusion_multiple_lists(ranking_lists, K=60, top_n=100):
|
206 |
+
"""
|
207 |
+
Perform Reciprocal Rank Fusion (RRF) for multiple ranking lists for each query.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
ranking_lists (list of list of dict): Each element is a list of dictionaries, where each dictionary contains query IDs and ranked lists.
|
211 |
+
K (int): A constant used in the RRF formula (default is 60).
|
212 |
+
top_n (int): Number of top results to return for each query (default is 100).
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
dict: A dictionary with query IDs as keys and their combined rankings as values.
|
216 |
+
"""
|
217 |
+
combined_results = defaultdict(list)
|
218 |
+
|
219 |
+
# Flatten all ranking lists into a single dictionary per query
|
220 |
+
merged_rankings = defaultdict(list)
|
221 |
+
for ranking_list in ranking_lists:
|
222 |
+
for ranking_dict in ranking_list:
|
223 |
+
for query_id, doc_list in ranking_dict.items():
|
224 |
+
merged_rankings[query_id].append(doc_list)
|
225 |
+
|
226 |
+
# Apply RRF for each query
|
227 |
+
for query_id, ranked_lists in merged_rankings.items():
|
228 |
+
rrf_map = defaultdict(float)
|
229 |
+
|
230 |
+
# Process rankings for each system
|
231 |
+
for rank_list in ranked_lists:
|
232 |
+
for rank, doc in enumerate(rank_list, 1): # Start rank from 1
|
233 |
+
rrf_map[str(doc)] += 1 / (rank + K)
|
234 |
+
|
235 |
+
# Sort documents based on their RRF scores in descending order
|
236 |
+
sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
|
237 |
+
combined_results[query_id] = [doc for doc, score in sorted_docs[:top_n]]
|
238 |
+
|
239 |
+
return dict(combined_results)
|