Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Initialize messages with system instructions | |
messages = [{"role": "system", "content": system_message}] | |
# Add historical conversation | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the new user message | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Get the model's response | |
for response_chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = response_chunk.choices[0].delta.content | |
response += token | |
response = response.strip() | |
# Enhanced context-specific relevance check | |
if is_relevant_to_constitution(response): | |
return response | |
# If response does not meet relevance criteria | |
return "Sorry, I can only provide information related to the Constitution of India. Please ask a question related to the Constitution." | |
def is_relevant_to_constitution(response): | |
# Keywords to check in the response | |
relevant_keywords = [ | |
"constitution", "article", "law", "legal", "rights", "act", "judiciary", | |
"legislature", "executive", "fundamental", "amendment", "provision", | |
"policy", "directive", "supreme court", "high court", "legislation", | |
"government", "election", "parliament", "state", "central", "reform", | |
"citizen", "equality", "democracy", "directive principles", "fundamental duties", | |
"preamble", "enforcement", "federalism", "separation of powers", "justice", | |
"republic", "state legislature", "union territory", "bill", "ordinance", | |
"convention", "charter", "treaty", "declaration", "proclamation", "amendments", | |
"compensation", "grievance", "judicial review", "secularism", "socialism", | |
"pluralism", "sovereignty", "autonomy", "independence", "integrity", "caste", | |
"reservation", "minorities", "discrimination", "fundamental rights", | |
"emergency", "state emergency", "national emergency", "local bodies", | |
"tribunal", "ombudsman", "civil rights", "criminal justice", "human rights" | |
] | |
# Check if response contains relevant keywords | |
return any(keyword in response.lower() for keyword in relevant_keywords) | |
# Create the Gradio chat interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are an expert assistant specializing in the Constitution of India. Your role is to provide accurate and detailed information about any part of the Constitution, including articles, amendments, schedules, and related legal concepts. When asked about a specific article, amendment, or legal term, provide a comprehensive explanation. If you are unsure or if the query seems to be about something other than the Constitution of India, do your best to relate it to the Constitution. Ensure that all responses are accurate, clear, and directly relevant to the question. If an article, amendment, or term is mentioned, assume it exists and provide the best possible explanation or details about it. ", label="System message", visible=False), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |