File size: 10,253 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json, math
import numpy as np

import os, sys
from six.moves import cPickle

from sys import path

sys.path.insert(0, os.getcwd())
sys.path.insert(0, 'captioning/')
# print('relative captioning is called')

import captioning.utils.opts as opts
import captioning.models as models
from captioning.data.dataloader import *
from captioning.data.dataloaderraw import *

import argparse
import captioning.utils.misc as utils
import torch

import skimage.io
from torch.autograd import Variable
from torchvision import transforms as trn

preprocess = trn.Compose([
    # trn.ToTensor(),
    trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

from captioning.utils.resnet_utils import myResnet
from captioning.utils.resnet_utils import ResNetBatch
import captioning.utils.resnet as resnet

import wget
import tempfile

class object:
    def __init__(self):
        self.input_fc_dir = ''
        self.input_json = ''
        self.batch_size = ''
        self.id = ''
        self.sample_max = 1
        self.cnn_model = 'resnet101'
        self.model = ''
        self.language_eval = 0
        self.beam_size = 1
        self.temperature = 1.0
        return


class Captioner():

    def __init__(self, is_relative=True, model_path=None, image_feat_params=None, data_type=None, load_resnet=True, diff_feat=None):
        opt = object()

        if image_feat_params==None:
            image_feat_params = {}
            image_feat_params['model'] = 'resnet101'
            image_feat_params['model_root'] = ''
            image_feat_params['att_size'] = 7

        # inputs specific to shoe dataset
        infos_path = os.path.join(model_path, 'infos_best.pkl')
        model_path = os.path.join(model_path, 'model_best.pth')

        opt.infos_path = infos_path
        opt.model_path = model_path
        opt.beam_size = 1
        opt.load_resnet = load_resnet

        # load pre-trained model, adjusting if URL
        if opt.infos_path.startswith("http:") or opt.infos_path.startswith("https:"):
            # create a folder to store the checkpoints for downloading
            if not os.path.exists('./checkpoints_usersim'):
                os.mkdir('./checkpoints_usersim')

            checkpoint_path = os.path.join('./checkpoints_usersim', data_type)
            if not os.path.exists(checkpoint_path):
                os.mkdir(checkpoint_path)

            # set the location for infos
            infos_loc = os.path.join(checkpoint_path, 'infos_best.pkl')

            if not os.path.exists(infos_loc):
                try:
                    wget.download(opt.infos_path, infos_loc)
                except Exception as err:
                    print(f"[{err}]")
        else:
            infos_loc = infos_path

        if opt.model_path.startswith("http:") or opt.model_path.startswith("https:"):
            # create a folder to store the checkpoints for downloading
            if not os.path.exists('./checkpoints_usersim'):
                os.mkdir('./checkpoints_usersim')

            checkpoint_path = os.path.join('./checkpoints_usersim', data_type)
            if not os.path.exists(checkpoint_path):
                os.mkdir(checkpoint_path)

            # set the location for models
            model_loc = os.path.join(checkpoint_path, 'model_best.pth')

            if not os.path.exists(model_loc):
                try:
                    wget.download(opt.model_path, model_loc)
                except Exception as err:
                    print(f"[{err}]")
                opt.model = model_loc
        else:
            opt.model = model_path

        if os.path.exists(infos_loc):
            # load existing infos
            with open(infos_loc, 'rb') as f:
                infos = cPickle.load(f)

        self.caption_model = infos["opt"].caption_model

        # override and collect parameters
        if len(opt.input_fc_dir) == 0:
            opt.input_fc_dir = infos['opt'].input_fc_dir
            opt.input_att_dir = infos['opt'].input_att_dir
            opt.input_label_h5 = infos['opt'].input_label_h5
        if len(opt.input_json) == 0:
            opt.input_json = infos['opt'].input_json
        if opt.batch_size == 0:
            opt.batch_size = infos['opt'].batch_size
        if len(opt.id) == 0:
            opt.id = infos['opt'].id
        ignore = ["id", "batch_size", "beam_size", "start_from", "language_eval", "model"]
        for k in vars(infos['opt']).keys():
            if k not in ignore:
                if k in vars(opt):
                    assert vars(opt)[k] == vars(infos['opt'])[k], k + ' option not consistent'
                else:
                    vars(opt).update({k: vars(infos['opt'])[k]})  # copy over options from model

        vocab = infos['vocab']  # ix -> word mapping

        #         print('opt:', opt)

        # Setup the model
        opt.vocab = vocab
        model = models.setup(opt)
        del opt.vocab
        if torch.cuda.is_available():
            model.load_state_dict(torch.load(opt.model))
            model.cuda()
        else:
            model.load_state_dict(torch.load(opt.model, map_location={'cuda:0': 'cpu'}))

        model.eval()

        self.is_relative = is_relative
        self.model = model
        self.vocab = vocab
        self.opt = vars(opt)

        # Load ResNet for processing images
        if opt.load_resnet:
            if image_feat_params['model_root']=='':
                net = getattr(resnet, image_feat_params['model'])(pretrained=True)
            else:
                net = getattr(resnet, image_feat_params['model'])()
                net.load_state_dict(
                    torch.load(os.path.join(image_feat_params['model_root'], image_feat_params['model'] + '.pth')))
            my_resnet = myResnet(net)
            if torch.cuda.is_available():
                my_resnet.cuda()
            my_resnet.eval()

            my_resnet_batch = ResNetBatch(net)
            if torch.cuda.is_available():
                my_resnet_batch.cuda()

            self.my_resnet_batch = my_resnet_batch
            self.my_resnet = my_resnet
        self.att_size = image_feat_params['att_size']

        # Control the input features of the model
        if diff_feat == None:
            if self.caption_model == "show_attend_tell":
                self.diff_feat = True
            else:
                self.diff_feat = False
        else:
            self.diff_feat = diff_feat

    def gen_caption_from_feat(self, feat_target, feat_reference=None):
        if self.is_relative and feat_reference == None:
            return None, None

        if not self.is_relative and not feat_reference == None:
            return None, None

        if self.is_relative:
            if self.diff_feat:
                fc_feat = torch.cat((feat_target[0], feat_target[0] - feat_reference[0]), dim=-1)
                att_feat = torch.cat((feat_target[1], feat_target[1] - feat_reference[1]), dim=-1)
            else:
                fc_feat = torch.cat((feat_target[0], feat_reference[0]), dim=-1)
                att_feat = torch.cat((feat_target[1], feat_reference[1]), dim=-1)
        else:
            fc_feat = feat_target[0]
            att_feat = feat_target[1]

        # Reshape to B x K x C (128,14,14,4096) --> (128,196,4096)
        att_feat = att_feat.view(att_feat.shape[0], att_feat.shape[1] * att_feat.shape[2], att_feat.shape[-1])

        att_masks = np.zeros(att_feat.shape[:2], dtype='float32')
        for i in range(len(att_feat)):
            att_masks[i, :att_feat[i].shape[0]] = 1
        # set att_masks to None if attention features have same length
        if att_masks.sum() == att_masks.size:
            att_masks = None

        if self.caption_model == 'show_attend_tell':
            seq, _ = self.model.sample(fc_feat, att_feat, self.opt)
        else:
            seq, _ = self.model(fc_feat, att_feat, att_masks=att_masks, opt=self.opt, mode='sample')
        sents = utils.decode_sequence(self.vocab, seq)

        return seq, sents

    def get_vocab_size(self):
        return len(self.vocab)

    def get_img_feat(self, img_name):
        # load the image
        I = skimage.io.imread(img_name)

        if len(I.shape) == 2:
            I = I[:, :, np.newaxis]
            I = np.concatenate((I, I, I), axis=2)

        I = I.astype('float32') / 255.0
        I = torch.from_numpy(I.transpose([2, 0, 1]))
        if torch.cuda.is_available(): I = I.cuda()
        # I = Variable(preprocess(I), volatile=True)
        with torch.no_grad():
            I = preprocess(I)
            fc, att = self.my_resnet(I, self.att_size)

        return fc, att

    def get_img_feat_batch(self, img_names, batchsize=32):
        if not isinstance(img_names, list):
            img_names = [img_names]

        num_images = len(img_names)
        num_batches = math.ceil(np.float(num_images) / np.float(batchsize))

        feature_fc = []
        feature_att = []

        for id in range(num_batches):
            startInd = id * batchsize
            endInd = min((id + 1) * batchsize, num_images)

            img_names_current_batch = img_names[startInd:endInd]
            I_current_batch = []

            for img_name in img_names_current_batch:
                I = skimage.io.imread(img_name)

                if len(I.shape) == 2:
                    I = I[:, :, np.newaxis]
                    I = np.concatenate((I, I, I), axis=2)

                I = I.astype('float32') / 255.0
                I = torch.from_numpy(I.transpose([2, 0, 1]))
                I_current_batch.append(preprocess(I))

            I_current_batch = torch.stack(I_current_batch, dim=0)
            if torch.cuda.is_available(): I_current_batch = I_current_batch.cuda()
            # I_current_batch = Variable(I_current_batch, volatile=True)
            with torch.no_grad():
                fc, att = self.my_resnet_batch(I_current_batch, self.att_size)

            feature_fc.append(fc)
            feature_att.append(att)

        feature_fc = torch.cat(feature_fc, dim=0)
        feature_att = torch.cat(feature_att, dim=0)

        return feature_fc, feature_att