Spaces:
Sleeping
Sleeping
File size: 17,566 Bytes
9bf9e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
from . import utils
from .CaptionModel import CaptionModel
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']
# torch.manual_seed(42)
# if torch.cuda.is_available():
# torch.cuda.manual_seed(42)
class ShowTellModel(CaptionModel):
def __init__(self, opt):
super(ShowTellModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.fc_feat_size = opt.fc_feat_size
self.eos_idx = getattr(opt, 'eos_idx', 0)
self.pad_idx = getattr(opt, 'pad_idx', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
self.dropout = nn.Dropout(self.drop_prob_lm)
# For remove bad endding
self.vocab = opt.vocab
self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, bsz):
weight = self.logit.weight
if self.rnn_type == 'lstm':
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
else:
return weight.new_zeros(self.num_layers, bsz, self.rnn_size)
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
if seq.ndim == 3: # B * seq_per_img * seq_len
seq = seq.reshape(-1, seq.shape[2])
seq_per_img = seq.shape[0] // batch_size
state = self.init_hidden(batch_size*seq_per_img)
outputs = []
if seq_per_img > 1:
fc_feats = utils.repeat_tensors(seq_per_img, fc_feats)
for i in range(seq.size(1)+1):
if i == 0:
xt = self.img_embed(fc_feats)
else:
if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i-1].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i-1].data.clone()
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i-1].clone()
# break if all the sequences end
if i >= 2 and seq[:, i-1].data.sum() == 0:
break
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
outputs.append(output)
return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous()
def get_logprobs_state(self, it, state):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
# beam_size = opt.get('beam_size', 10)
# batch_size = fc_feats.size(0)
# assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
# seq = torch.LongTensor(self.seq_length, batch_size).zero_()
# seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# # lets process every image independently for now, for simplicity
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
for t in range(2):
if t == 0:
xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size)
elif t == 1: # input <bos>
it = fc_feats.data.new(beam_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
self.done_beams[k] = self.old_beam_search(state, logprobs, opt=opt)
if sample_n == beam_size:
for _n in range(sample_n):
seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
else:
seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
# seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
# seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# # return the samples and their log likelihoods
# return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _new_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
self.done_beams = [[] for _ in range(batch_size)]
state = self.init_hidden(batch_size)
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
self.done_beams = self.beam_search(state, logprobs, opt=opt)
for k in range(batch_size):
if sample_n == beam_size:
for _n in range(sample_n):
seq_len = self.done_beams[k][_n]['seq'].shape[0]
seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
else:
seq_len = self.done_beams[k][0]['seq'].shape[0]
seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _old_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
for t in range(self.seq_length + 2):
if t == 0:
xt = self.img_embed(fc_feats)
else:
if t == 1: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
# sample the next word
if t == self.seq_length + 1: # skip if we achieve maximum length
break
if sample_method == 'greedy':
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
it = torch.multinomial(prob_prev, 1).to(logprobs.device)
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
if t >= 1:
# stop when all finished
if t == 1:
unfinished = it > 0
else:
unfinished = unfinished & (it > 0)
it = it * unfinished.type_as(it)
seq[:,t-1] = it #seq[t] the input of t+2 time step
seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
if unfinished.sum() == 0:
break
return seq, seqLogprobs
# remove bad endings and UNK
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
sample_n = int(opt.get('sample_n', 1))
sample_n = 1
group_size = opt.get('group_size', 1)
output_logsoftmax = opt.get('output_logsoftmax', 1)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 1)
suppress_UNK = opt.get('suppress_UNK', 1)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, opt=opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
trigrams = [] # will be a list of batch_size dictionaries
# seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
# seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
for t in range(self.seq_length + 1):
if t == 0:
xt = self.img_embed(fc_feats)
else:
if t == 1: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
# print('seq', seq)
# print('self.seq_length',self.seq_length)
# print('seq shape', seq.shape)
if remove_bad_endings and t > 0:
logprobs[torch.from_numpy(np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf')
# suppress UNK tokens in the decoding
if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK':
logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000
# if remove_bad_endings and t > 0:
# tmp = logprobs.new_zeros(logprobs.size())
# prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# # Make it impossible to generate bad_endings
# tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
# # tmp[torch.from_numpy(prev_bad.bool()), 0] = float('-inf')
# logprobs = logprobs + tmp
# Mess with trigrams
# Copy from https://github.com/lukemelas/image-paragraph-captioning
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.seq_length+1: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
unfinished = unfinished & (it != self.eos_idx)
# print('-------logprobs shape:',logprobs.shape)
# print('-------it shape:',it.shape)
seq[:,t-1] = it
seqLogprobs[:,t-1] = logprobs
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
# print('-------seqLogprobs shape:',seqLogprobs.shape)
# print('-------seq shape:',seq.shape)
return seq, seqLogprobs |