File size: 17,566 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
from . import utils

from .CaptionModel import CaptionModel

bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']

# torch.manual_seed(42)
# if torch.cuda.is_available():
#     torch.cuda.manual_seed(42)

class ShowTellModel(CaptionModel):
    def __init__(self, opt):
        super(ShowTellModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = opt.seq_length
        self.fc_feat_size = opt.fc_feat_size
        
        self.eos_idx = getattr(opt, 'eos_idx', 0)
        self.pad_idx = getattr(opt, 'pad_idx', 0)

        self.ss_prob = 0.0 # Schedule sampling probability

        self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
        self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
        self.dropout = nn.Dropout(self.drop_prob_lm)
        
        # For remove bad endding
        self.vocab = opt.vocab
        self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
        
        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.embed.weight.data.uniform_(-initrange, initrange)
        self.logit.bias.data.fill_(0)
        self.logit.weight.data.uniform_(-initrange, initrange)

    def init_hidden(self, bsz):
        weight = self.logit.weight
        if self.rnn_type == 'lstm':
            return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
                    weight.new_zeros(self.num_layers, bsz, self.rnn_size))
        else:
            return weight.new_zeros(self.num_layers, bsz, self.rnn_size)

    def _forward(self, fc_feats, att_feats, seq, att_masks=None):
        
        batch_size = fc_feats.size(0)
        if seq.ndim == 3:  # B * seq_per_img * seq_len
            seq = seq.reshape(-1, seq.shape[2])
        seq_per_img = seq.shape[0] // batch_size
        state = self.init_hidden(batch_size*seq_per_img)
        outputs = []

        if seq_per_img > 1:
            fc_feats = utils.repeat_tensors(seq_per_img, fc_feats)
            
        for i in range(seq.size(1)+1):
            if i == 0:
                xt = self.img_embed(fc_feats)
            else:
                if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample
                    sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1)
                    sample_mask = sample_prob < self.ss_prob
                    if sample_mask.sum() == 0:
                        it = seq[:, i-1].clone()
                    else:
                        sample_ind = sample_mask.nonzero().view(-1)
                        it = seq[:, i-1].data.clone()
                        #prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
                        #it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
                        prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
                        it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
                else:
                    it = seq[:, i-1].clone()                
                # break if all the sequences end
                if i >= 2 and seq[:, i-1].data.sum() == 0:
                    break
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)

            output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
            outputs.append(output)

        return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous()

    def get_logprobs_state(self, it, state):
        # 'it' contains a word index
        xt = self.embed(it)
                
        output, state = self.core(xt.unsqueeze(0), state)
        logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

        return logprobs, state

    def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
#         beam_size = opt.get('beam_size', 10)
#         batch_size = fc_feats.size(0)

#         assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
#         seq = torch.LongTensor(self.seq_length, batch_size).zero_()
#         seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
#         # lets process every image independently for now, for simplicity
        
        
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        sample_n = opt.get('sample_n', 10)
        # when sample_n == beam_size then each beam is a sample.
        assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
        batch_size = fc_feats.size(0)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            state = self.init_hidden(beam_size)
            for t in range(2):
                if t == 0:
                    xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size)
                elif t == 1: # input <bos>
                    it = fc_feats.data.new(beam_size).long().zero_()
                    xt = self.embed(it)

                output, state = self.core(xt.unsqueeze(0), state)
                logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

            self.done_beams[k] = self.old_beam_search(state, logprobs, opt=opt)
            if sample_n == beam_size:
                for _n in range(sample_n):
                    seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
                    seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
            else:
                seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
                seqLogprobs[k, :] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq, seqLogprobs
            
#             seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
#             seqLogprobs[:, k] = self.done_beams[k][0]['logps']
#         # return the samples and their log likelihoods
#         return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)

    def _new_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):

        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        sample_n = opt.get('sample_n', 10)
        # when sample_n == beam_size then each beam is a sample.
        assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
        batch_size = fc_feats.size(0)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)

        self.done_beams = [[] for _ in range(batch_size)]
        
        state = self.init_hidden(batch_size)
        
        it = fc_feats.data.new(batch_size).long().zero_()
        xt = self.embed(it)
        
        output, state = self.core(xt.unsqueeze(0), state)
        logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
        
        self.done_beams = self.beam_search(state, logprobs, opt=opt)
        
        for k in range(batch_size):
            if sample_n == beam_size:
                for _n in range(sample_n):
                    seq_len = self.done_beams[k][_n]['seq'].shape[0]
                    seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
                    seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
            else:
                seq_len = self.done_beams[k][0]['seq'].shape[0]
                seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
                seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
#         return the samples and their log likelihoods
        return seq, seqLogprobs

    def _old_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
            return self._sample_beam(fc_feats, att_feats, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)
        seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
        for t in range(self.seq_length + 2):
            if t == 0:
                xt = self.img_embed(fc_feats)
            else:
                if t == 1: # input <bos>
                    it = fc_feats.data.new(batch_size).long().zero_()
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)
            logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

            # sample the next word
            if t == self.seq_length + 1: # skip if we achieve maximum length
                break
            if sample_method == 'greedy':
                sampleLogprobs, it = torch.max(logprobs.data, 1)
                it = it.view(-1).long()
            else:
                if temperature == 1.0:
                    prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
                else:
                    # scale logprobs by temperature
                    prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                it = torch.multinomial(prob_prev, 1).to(logprobs.device)
                sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
                it = it.view(-1).long() # and flatten indices for downstream processing

            if t >= 1:
                # stop when all finished
                if t == 1:
                    unfinished = it > 0
                else:
                    unfinished = unfinished & (it > 0)
                it = it * unfinished.type_as(it)
                seq[:,t-1] = it #seq[t] the input of t+2 time step
                seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
                if unfinished.sum() == 0:
                    break
        return seq, seqLogprobs


# remove bad endings and UNK
    def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        
        sample_n = int(opt.get('sample_n', 1))
        sample_n = 1
        group_size = opt.get('group_size', 1)
        output_logsoftmax = opt.get('output_logsoftmax', 1)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)
        remove_bad_endings = opt.get('remove_bad_endings', 1)
        suppress_UNK = opt.get('suppress_UNK', 1)
        
        if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
            return self._sample_beam(fc_feats, att_feats, opt=opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)
        
        trigrams = [] # will be a list of batch_size dictionaries
        
#         seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
#         seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
        
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
        for t in range(self.seq_length + 1):
            if t == 0:
                xt = self.img_embed(fc_feats)
            else:
                if t == 1: # input <bos>
                    it = fc_feats.data.new(batch_size).long().zero_()
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)
            logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
            
            if decoding_constraint and t > 0:
                tmp = logprobs.new_zeros(logprobs.size())
                tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
                logprobs = logprobs + tmp

#             print('seq', seq)
#             print('self.seq_length',self.seq_length)
#             print('seq shape', seq.shape)
            if remove_bad_endings and t > 0:
                logprobs[torch.from_numpy(np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf')
            
            # suppress UNK tokens in the decoding
            if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK':
                logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000

#             if remove_bad_endings and t > 0:
#                 tmp = logprobs.new_zeros(logprobs.size())
#                 prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
#                 # Make it impossible to generate bad_endings
#                 tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
# #                 tmp[torch.from_numpy(prev_bad.bool()), 0] = float('-inf')
#                 logprobs = logprobs + tmp

            # Mess with trigrams
            # Copy from https://github.com/lukemelas/image-paragraph-captioning
            if block_trigrams and t >= 3:
                # Store trigram generated at last step
                prev_two_batch = seq[:,t-3:t-1]
                for i in range(batch_size): # = seq.size(0)
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    current  = seq[i][t-1]
                    if t == 3: # initialize
                        trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
                    elif t > 3:
                        if prev_two in trigrams[i]: # add to list
                            trigrams[i][prev_two].append(current)
                        else: # create list
                            trigrams[i][prev_two] = [current]
                # Block used trigrams at next step
                prev_two_batch = seq[:,t-2:t]
                mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
                for i in range(batch_size):
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    if prev_two in trigrams[i]:
                        for j in trigrams[i][prev_two]:
                            mask[i,j] += 1
                # Apply mask to log probs
                #logprobs = logprobs - (mask * 1e9)
                alpha = 2.0 # = 4
                logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)

            # sample the next word
            if t == self.seq_length+1: # skip if we achieve maximum length
                break
            it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)

            # stop when all finished
            if t == 0:
                unfinished = it != self.eos_idx
            else:
                it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
                logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
                unfinished = unfinished & (it != self.eos_idx)
        
#             print('-------logprobs shape:',logprobs.shape)
#             print('-------it shape:',it.shape)

            seq[:,t-1] = it
            seqLogprobs[:,t-1] = logprobs
            # quit loop if all sequences have finished
            if unfinished.sum() == 0:
                break
#         print('-------seqLogprobs shape:',seqLogprobs.shape)
#         print('-------seq shape:',seq.shape)
        return seq, seqLogprobs