File size: 7,961 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn

import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
from . import misc as utils
from eval_utils import getCOCO

from .div_utils import compute_div_n, compute_global_div_n

import sys
try:
    sys.path.append("coco-caption")
    annFile = 'coco-caption/annotations/captions_val2014.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap
    from pycocoevalcap.eval_spice import COCOEvalCapSpice
    from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
    from pycocoevalcap.bleu.bleu import Bleu
    sys.path.append("cider")
    from pyciderevalcap.cider.cider import Cider
except:
    print('Warning: requirements for eval_multi not satisfied')


def eval_allspice(dataset, preds_n, model_id, split):
    coco = getCOCO(dataset)
    valids = coco.getImgIds()
    
    capsById = {}
    for d in preds_n:
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt_n = [p for p in preds_n if p['image_id'] in valids]
    print('using %d/%d predictions_n' % (len(preds_filt_n), len(preds_n)))
    cache_path_n = os.path.join('eval_results/', model_id + '_' + split + '_n.json')
    json.dump(preds_filt_n, open(cache_path_n, 'w')) # serialize to temporary json file. Sigh, COCO API...

    # Eval AllSPICE
    cocoRes_n = coco.loadRes(cache_path_n)
    cocoEvalAllSPICE = COCOEvalCapSpice(coco, cocoRes_n)
    cocoEvalAllSPICE.params['image_id'] = cocoRes_n.getImgIds()
    cocoEvalAllSPICE.evaluate()

    out = {}
    for metric, score in cocoEvalAllSPICE.eval.items():
        out['All'+metric] = score

    imgToEvalAllSPICE = cocoEvalAllSPICE.imgToEval
    # collect SPICE_sub_score
    for k in list(imgToEvalAllSPICE.values())[0]['SPICE'].keys():
        if k != 'All':
            out['AllSPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEvalAllSPICE.values()])
            out['AllSPICE_'+k] = (out['AllSPICE_'+k][out['AllSPICE_'+k]==out['AllSPICE_'+k]]).mean()
    for p in preds_filt_n:
        image_id, caption = p['image_id'], p['caption']
        imgToEvalAllSPICE[image_id]['caption'] = capsById[image_id]
    return {'overall': out, 'imgToEvalAllSPICE': imgToEvalAllSPICE}

def eval_oracle(dataset, preds_n, model_id, split):
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')

    coco = getCOCO(dataset)
    valids = coco.getImgIds()

    capsById = {}
    for d in preds_n:
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
    
    sample_n = capsById[list(capsById.keys())[0]]
    for i in range(len(capsById[list(capsById.keys())[0]])):
        preds = [_[i] for _ in capsById.values()]

        json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

        cocoRes = coco.loadRes(cache_path)
        cocoEval = COCOEvalCap(coco, cocoRes)
        cocoEval.params['image_id'] = cocoRes.getImgIds()
        cocoEval.evaluate()

        imgToEval = cocoEval.imgToEval
        for img_id in capsById.keys():
            tmp = imgToEval[img_id]
            for k in tmp['SPICE'].keys():
                if k != 'All':
                    tmp['SPICE_'+k] = tmp['SPICE'][k]['f']
                    if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan
                        tmp['SPICE_'+k] = -100
            tmp['SPICE'] = tmp['SPICE']['All']['f']
            if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100
            capsById[img_id][i]['scores'] = imgToEval[img_id]

    out = {'overall': {}, 'ImgToEval': {}}
    for img_id in capsById.keys():
        out['ImgToEval'][img_id] = {}
        for metric in capsById[img_id][0]['scores'].keys():
            if metric == 'image_id': continue
            out['ImgToEval'][img_id]['oracle_'+metric] = max([_['scores'][metric] for _ in capsById[img_id]])
            out['ImgToEval'][img_id]['avg_'+metric] = sum([_['scores'][metric] for _ in capsById[img_id]]) / len(capsById[img_id])
        out['ImgToEval'][img_id]['captions'] = capsById[img_id]
    for metric in list(out['ImgToEval'].values())[0].keys():
        if metric == 'captions':
            continue
        tmp = np.array([_[metric] for _ in out['ImgToEval'].values()])
        tmp = tmp[tmp!=-100]
        out['overall'][metric] = tmp.mean()
        
    return out

def eval_div_stats(dataset, preds_n, model_id, split):
    tokenizer = PTBTokenizer()

    capsById = {}
    for i, d in enumerate(preds_n):
        d['id'] = i
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]

    n_caps_perimg = len(capsById[list(capsById.keys())[0]])
    print(n_caps_perimg)
    _capsById = capsById # save the untokenized version
    capsById = tokenizer.tokenize(capsById)

    div_1, adiv_1 = compute_div_n(capsById,1)
    div_2, adiv_2 = compute_div_n(capsById,2)

    globdiv_1, _= compute_global_div_n(capsById,1)

    print('Diversity Statistics are as follows: \n Div1: %.2f, Div2: %.2f, gDiv1: %d\n'%(div_1,div_2, globdiv_1))

    # compute mbleu
    scorer = Bleu(4)
    all_scrs = []
    scrperimg = np.zeros((n_caps_perimg, len(capsById)))

    for i in range(n_caps_perimg):
        tempRefsById = {}
        candsById = {}
        for k in capsById:
            tempRefsById[k] = capsById[k][:i] + capsById[k][i+1:]
            candsById[k] = [capsById[k][i]]

        score, scores = scorer.compute_score(tempRefsById, candsById)
        all_scrs.append(score)
        scrperimg[i,:] = scores[1]

    all_scrs = np.array(all_scrs)
    
    out = {}
    out['overall'] = {'Div1': div_1, 'Div2': div_2, 'gDiv1': globdiv_1}
    for k, score in zip(range(4), all_scrs.mean(axis=0).tolist()):
        out['overall'].update({'mBLeu_%d'%(k+1): score})
    imgToEval = {}
    for i,imgid in enumerate(capsById.keys()):
        imgToEval[imgid] = {'mBleu_2' : scrperimg[:,i].mean()}
        imgToEval[imgid]['individuals'] = []
        for j, d in enumerate(_capsById[imgid]):
            imgToEval[imgid]['individuals'].append(preds_n[d['id']])
            imgToEval[imgid]['individuals'][-1]['mBleu_2'] = scrperimg[j,i]
    out['ImgToEval'] = imgToEval

    print('Mean mutual Bleu scores on this set is:\nmBLeu_1, mBLeu_2, mBLeu_3, mBLeu_4')
    print(all_scrs.mean(axis=0))

    return out

def eval_self_cider(dataset, preds_n, model_id, split):
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')

    coco = getCOCO(dataset)
    valids = coco.getImgIds()
    
    # Get Cider_scorer
    Cider_scorer = Cider(df='corpus')

    tokenizer = PTBTokenizer()
    gts = {}
    for imgId in valids:
        gts[imgId] = coco.imgToAnns[imgId]
    gts  = tokenizer.tokenize(gts)

    for imgId in valids:
        Cider_scorer.cider_scorer += (None, gts[imgId])
    Cider_scorer.cider_scorer.compute_doc_freq()
    Cider_scorer.cider_scorer.ref_len = np.log(float(len(Cider_scorer.cider_scorer.crefs)))

    # Prepare captions
    capsById = {}
    for d in preds_n:
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]

    capsById = tokenizer.tokenize(capsById)
    imgIds = list(capsById.keys())
    scores = Cider_scorer.my_self_cider([capsById[_] for _ in imgIds])

    def get_div(eigvals):
        eigvals = np.clip(eigvals, 0, None)
        return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals))
    sc_scores = [get_div(np.linalg.eigvalsh(_/10)) for _ in scores]
    score = np.mean(np.array(sc_scores))
    
    imgToEval = {}
    for i, image_id in enumerate(imgIds):
        imgToEval[image_id] = {'self_cider': sc_scores[i], 'self_cider_mat': scores[i].tolist()}
    return {'overall': {'self_cider': score}, 'imgToEval': imgToEval}


    return score