File size: 1,422 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.nn.functional as F

class myResnet(nn.Module):
    def __init__(self, resnet):
        super(myResnet, self).__init__()
        self.resnet = resnet

    def forward(self, img, att_size=14):
        x = img.unsqueeze(0)

        x = self.resnet.conv1(x)
        x = self.resnet.bn1(x)
        x = self.resnet.relu(x)
        x = self.resnet.maxpool(x)

        x = self.resnet.layer1(x)
        x = self.resnet.layer2(x)
        x = self.resnet.layer3(x)
        x = self.resnet.layer4(x)

        fc = x.mean(3).mean(2).squeeze()
        att = F.adaptive_avg_pool2d(x,[att_size,att_size]).squeeze().permute(1, 2, 0)
        
        return fc, att


class ResNetBatch(nn.Module):
    def __init__(self, resnet):
        super(ResNetBatch, self).__init__()
        self.resnet = resnet

    def forward(self, x, att_size=14):
        # size of x: nimages x nChannel x dim x dim

        x = self.resnet.conv1(x)
        x = self.resnet.bn1(x)
        x = self.resnet.relu(x)
        x = self.resnet.maxpool(x)

        x = self.resnet.layer1(x)
        x = self.resnet.layer2(x)
        x = self.resnet.layer3(x)
        x = self.resnet.layer4(x)

        fc = x.mean(3).mean(2)
        # att = F.adaptive_avg_pool2d(x, [att_size, att_size]).squeeze().permute(1, 2, 0)
        att = F.adaptive_avg_pool2d(x, [att_size, att_size]).permute(0, 2, 3, 1)

        return fc, att