File size: 17,065 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import h5py
from lmdbdict import lmdbdict
from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC
import os
import numpy as np
import numpy.random as npr
import random
from functools import partial

import torch
import torch.utils.data as data

import multiprocessing
import six


class HybridLoader:
    """
    If db_path is a director, then use normal file loading
    If lmdb, then load from lmdb
    The loading method depend on extention.

    in_memory: if in_memory is True, we save all the features in memory
               For individual np(y|z)s, we don't need to do that because the system will do this for us.
               Should be useful for lmdb or h5.
               (Copied this idea from vilbert)
    """
    def __init__(self, db_path, ext, in_memory=False):
        self.db_path = db_path
        self.ext = ext
        if self.ext == '.npy':
            self.loader = lambda x: np.load(six.BytesIO(x))
        else:
            def load_npz(x):
                x = np.load(six.BytesIO(x))
                return x['feat'] if 'feat' in x else x['z']  # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly.
            self.loader = load_npz
        if db_path.endswith('.lmdb'):
            self.db_type = 'lmdb'
            self.lmdb = lmdbdict(db_path, unsafe=True)
            self.lmdb._key_dumps = DUMPS_FUNC['ascii']
            self.lmdb._value_loads = LOADS_FUNC['identity']
        elif db_path.endswith('.pth'): # Assume a key,value dictionary
            self.db_type = 'pth'
            self.feat_file = torch.load(db_path)
            self.loader = lambda x: x
            print('HybridLoader: ext is ignored')
        elif db_path.endswith('h5'):
            self.db_type = 'h5'
            self.loader = lambda x: np.array(x).astype('float32')
        else:
            self.db_type = 'dir'

        self.in_memory = in_memory
        if self.in_memory:
            self.features = {}
    
    def get(self, key):

        if self.in_memory and key in self.features:
            # We save f_input because we want to save the
            # compressed bytes to save memory
            f_input = self.features[key]
        elif self.db_type == 'lmdb':
            f_input = self.lmdb[key]
        elif self.db_type == 'pth':
            f_input = self.feat_file[key]
        elif self.db_type == 'h5':
            f_input = h5py.File(self.db_path, 'r')[key]
        else:
            f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read()

        if self.in_memory and key not in self.features:
            self.features[key] = f_input

        # load image
        feat = self.loader(f_input)

        return feat

class Dataset(data.Dataset):
    
    def get_vocab_size(self):
        return self.vocab_size

    def get_vocab(self):
        return self.ix_to_word

    def get_seq_length(self):
        return self.seq_length

    def __init__(self, opt):
        self.opt = opt
        self.seq_per_img = opt.seq_per_img
        
        # feature related options
        self.use_fc = getattr(opt, 'use_fc', True)
        self.use_att = getattr(opt, 'use_att', True)
        self.use_box = getattr(opt, 'use_box', 0)
        self.norm_att_feat = getattr(opt, 'norm_att_feat', 0)
        self.norm_box_feat = getattr(opt, 'norm_box_feat', 0)

        # load the json file which contains additional information about the dataset
        print('DataLoader loading json file: ', opt.input_json)
        self.info = json.load(open(self.opt.input_json))
        if 'ix_to_word' in self.info:
            self.ix_to_word = self.info['ix_to_word']
            self.vocab_size = len(self.ix_to_word)
            print('vocab size is ', self.vocab_size)
        
        # open the hdf5 file
        print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5)
        """
        Setting input_label_h5 to none is used when only doing generation.
        For example, when you need to test on coco test set.
        """
        if self.opt.input_label_h5 != 'none':
            self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core')
            # load in the sequence data
            seq_size = self.h5_label_file['labels'].shape
            self.label = self.h5_label_file['labels'][:]
            self.seq_length = seq_size[1]
            print('max sequence length in data is', self.seq_length)
            # load the pointers in full to RAM (should be small enough)
            self.label_start_ix = self.h5_label_file['label_start_ix'][:]
            self.label_end_ix = self.h5_label_file['label_end_ix'][:]
        else:
            self.seq_length = 1

        self.data_in_memory = getattr(opt, 'data_in_memory', False)
        self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory)
        self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory)
        self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory)

        self.num_images = len(self.info['images']) # self.label_start_ix.shape[0]
        print('read %d image features' %(self.num_images))

        # separate out indexes for each of the provided splits
        self.split_ix = {'train': [], 'val': [], 'test': []}
        for ix in range(len(self.info['images'])):
            img = self.info['images'][ix]
            if not 'split' in img:
                self.split_ix['train'].append(ix)
                self.split_ix['val'].append(ix)
                self.split_ix['test'].append(ix)
            elif img['split'] == 'train':
                self.split_ix['train'].append(ix)
            elif img['split'] == 'val':
                self.split_ix['val'].append(ix)
            elif img['split'] == 'test':
                self.split_ix['test'].append(ix)
            elif opt.train_only == 0: # restval
                self.split_ix['train'].append(ix)

        print('assigned %d images to split train' %len(self.split_ix['train']))
        print('assigned %d images to split val' %len(self.split_ix['val']))
        print('assigned %d images to split test' %len(self.split_ix['test']))

    def get_captions(self, ix, seq_per_img):
        # fetch the sequence labels
        ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1
        ix2 = self.label_end_ix[ix] - 1
        ncap = ix2 - ix1 + 1 # number of captions available for this image
        assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t'
        
        random.seed(42)
        torch.manual_seed(42)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(42)

        if ncap < seq_per_img:
            # we need to subsample (with replacement)
            seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int')
            for q in range(seq_per_img):
                ixl = random.randint(ix1,ix2)
                seq[q, :] = self.label[ixl, :self.seq_length]
        else:
            ixl = random.randint(ix1, ix2 - seq_per_img + 1)
            seq = self.label[ixl: ixl + seq_per_img, :self.seq_length]

        return seq

    def collate_func(self, batch, split):
        seq_per_img = self.seq_per_img

        fc_batch = []
        att_batch = []
        label_batch = []

        wrapped = False

        infos = []
        gts = []

        for sample in batch:
            # fetch image
            tmp_fc, tmp_att, tmp_seq, \
                ix, it_pos_now, tmp_wrapped = sample
            if tmp_wrapped:
                wrapped = True

            fc_batch.append(tmp_fc)
            att_batch.append(tmp_att)
            
            tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int')
            if hasattr(self, 'h5_label_file'):
                # if there is ground truth
                tmp_label[:, 1 : self.seq_length + 1] = tmp_seq
            label_batch.append(tmp_label)

            # Used for reward evaluation
            if hasattr(self, 'h5_label_file'):
                # if there is ground truth
                gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]])
            else:
                gts.append([])
        
            # record associated info as well
            info_dict = {}
            info_dict['ix'] = ix
            info_dict['id'] = self.info['images'][ix]['id']
            info_dict['file_path'] = self.info['images'][ix].get('file_path', '')
            infos.append(info_dict)

        # #sort by att_feat length
        # fc_batch, att_batch, label_batch, gts, infos = \
        #     zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True))
        fc_batch, att_batch, label_batch, gts, infos = \
            zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True))
        
        data = {}
        data['fc_feats'] = np.stack(fc_batch)
        # merge att_feats
        max_att_len = max([_.shape[0] for _ in att_batch])
        data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32')
        
        for i in range(len(att_batch)):
            data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i]
        
        data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32')
        for i in range(len(att_batch)):
            data['att_masks'][i, :att_batch[i].shape[0]] = 1
        # set att_masks to None if attention features have same length
        if data['att_masks'].sum() == data['att_masks'].size:
            data['att_masks'] = None

        data['labels'] = np.vstack(label_batch)
        # generate mask
        nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels'])))
        mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32')
        for ix, row in enumerate(mask_batch):
            row[:nonzeros[ix]] = 1
        data['masks'] = mask_batch
        data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1)
        data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1)

        data['gts'] = gts # all ground truth captions of each images
        data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample
                          'it_max': len(self.split_ix[split]), 'wrapped': wrapped}
        data['infos'] = infos

        data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor

        return data

    def __getitem__(self, index):
        """This function returns a tuple that is further passed to collate_fn
        """
        ix, it_pos_now, wrapped = index #self.split_ix[index]
        if self.use_att:
            att_feat = self.att_loader.get(str(self.info['images'][ix]['id']))
            # shape: (14,14,4096)
            
            # Reshape to K x C
            att_feat = att_feat.reshape(-1, att_feat.shape[-1])
            # shape:(196,4096)
            
            if self.norm_att_feat:
                att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True)
            if self.use_box:
                box_feat = self.box_loader.get(str(self.info['images'][ix]['id']))
                # devided by image width and height
                x1,y1,x2,y2 = np.hsplit(box_feat, 4)
                h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width']
                box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1??
                if self.norm_box_feat:
                    box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True)
                att_feat = np.hstack([att_feat, box_feat])
                # sort the features by the size of boxes
                att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True))
        else:
            att_feat = np.zeros((0,0), dtype='float32')
        if self.use_fc:
            try:
                fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id']))
            except:
                # Use average of attention when there is no fc provided (For bottomup feature)
                fc_feat = att_feat.mean(0)
        else:
            fc_feat = np.zeros((0), dtype='float32')
        if hasattr(self, 'h5_label_file'):
            seq = self.get_captions(ix, self.seq_per_img)
        else:
            seq = None
        return (fc_feat,
                att_feat, seq,
                ix, it_pos_now, wrapped)

    def __len__(self):
        return len(self.info['images'])

class DataLoader:
    def __init__(self, opt):
        self.opt = opt
        self.batch_size = self.opt.batch_size
        self.dataset = Dataset(opt)

        # Initialize loaders and iters
        self.loaders, self.iters = {}, {}
        for split in ['train', 'val', 'test']:
            if split == 'train':
                sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True)
            else:
                sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False)
            self.loaders[split] = data.DataLoader(dataset=self.dataset,
                                                  batch_size=self.batch_size,
                                                  sampler=sampler,
                                                  pin_memory=True,
                                                  num_workers=4, # 4 is usually enough
                                                  collate_fn=partial(self.dataset.collate_func, split=split),
                                                  drop_last=False)
            self.iters[split] = iter(self.loaders[split])

    def get_batch(self, split):
        try:
            data = next(self.iters[split])
        except StopIteration:
            self.iters[split] = iter(self.loaders[split])
            data = next(self.iters[split])
        return data

    def reset_iterator(self, split):
        self.loaders[split].sampler._reset_iter()
        self.iters[split] = iter(self.loaders[split])

    def get_vocab_size(self):
        return self.dataset.get_vocab_size()

    @property
    def vocab_size(self):
        return self.get_vocab_size()

    def get_vocab(self):
        return self.dataset.get_vocab()

    def get_seq_length(self):
        return self.dataset.get_seq_length()

    @property
    def seq_length(self):
        return self.get_seq_length()

    def state_dict(self):
        def get_prefetch_num(split):
            if self.loaders[split].num_workers > 0:
                return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size
            else:
                return 0
        return {split: loader.sampler.state_dict(get_prefetch_num(split)) \
                    for split, loader in self.loaders.items()}

    def load_state_dict(self, state_dict=None):
        if state_dict is None:
            return
        for split in self.loaders.keys():
            self.loaders[split].sampler.load_state_dict(state_dict[split])


class MySampler(data.sampler.Sampler):
    def __init__(self, index_list, shuffle, wrap):
        self.index_list = index_list
        self.shuffle = shuffle
        self.wrap = wrap
        # if wrap, there will be not stop iteration called
        # wrap True used during training, and wrap False used during test.
        self._reset_iter()

    def __iter__(self):
        return self

    def __next__(self):
        wrapped = False
        if self.iter_counter == len(self._index_list):
            self._reset_iter()
            if self.wrap:
                wrapped = True
            else:
                raise StopIteration()
        if len(self._index_list) == 0: # overflow when 0 samples
            return None
        elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped)
        self.iter_counter += 1
        return elem

    def next(self):
        return self.__next__()

    def _reset_iter(self):
        np.random.seed(42)
        if self.shuffle:
            rand_perm = npr.permutation(len(self.index_list))
            self._index_list = [self.index_list[_] for _ in rand_perm]
        else:
            self._index_list = self.index_list

        self.iter_counter = 0

    def __len__(self):
        return len(self.index_list)

    def load_state_dict(self, state_dict=None):
        if state_dict is None:
            return
        self._index_list = state_dict['index_list']
        self.iter_counter = state_dict['iter_counter']

    def state_dict(self, prefetched_num=None):
        prefetched_num = prefetched_num or 0
        return {
            'index_list': self._index_list,
            'iter_counter': self.iter_counter - prefetched_num
        }