Spaces:
Sleeping
Sleeping
File size: 17,065 Bytes
9bf9e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import h5py
from lmdbdict import lmdbdict
from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC
import os
import numpy as np
import numpy.random as npr
import random
from functools import partial
import torch
import torch.utils.data as data
import multiprocessing
import six
class HybridLoader:
"""
If db_path is a director, then use normal file loading
If lmdb, then load from lmdb
The loading method depend on extention.
in_memory: if in_memory is True, we save all the features in memory
For individual np(y|z)s, we don't need to do that because the system will do this for us.
Should be useful for lmdb or h5.
(Copied this idea from vilbert)
"""
def __init__(self, db_path, ext, in_memory=False):
self.db_path = db_path
self.ext = ext
if self.ext == '.npy':
self.loader = lambda x: np.load(six.BytesIO(x))
else:
def load_npz(x):
x = np.load(six.BytesIO(x))
return x['feat'] if 'feat' in x else x['z'] # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly.
self.loader = load_npz
if db_path.endswith('.lmdb'):
self.db_type = 'lmdb'
self.lmdb = lmdbdict(db_path, unsafe=True)
self.lmdb._key_dumps = DUMPS_FUNC['ascii']
self.lmdb._value_loads = LOADS_FUNC['identity']
elif db_path.endswith('.pth'): # Assume a key,value dictionary
self.db_type = 'pth'
self.feat_file = torch.load(db_path)
self.loader = lambda x: x
print('HybridLoader: ext is ignored')
elif db_path.endswith('h5'):
self.db_type = 'h5'
self.loader = lambda x: np.array(x).astype('float32')
else:
self.db_type = 'dir'
self.in_memory = in_memory
if self.in_memory:
self.features = {}
def get(self, key):
if self.in_memory and key in self.features:
# We save f_input because we want to save the
# compressed bytes to save memory
f_input = self.features[key]
elif self.db_type == 'lmdb':
f_input = self.lmdb[key]
elif self.db_type == 'pth':
f_input = self.feat_file[key]
elif self.db_type == 'h5':
f_input = h5py.File(self.db_path, 'r')[key]
else:
f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read()
if self.in_memory and key not in self.features:
self.features[key] = f_input
# load image
feat = self.loader(f_input)
return feat
class Dataset(data.Dataset):
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.ix_to_word
def get_seq_length(self):
return self.seq_length
def __init__(self, opt):
self.opt = opt
self.seq_per_img = opt.seq_per_img
# feature related options
self.use_fc = getattr(opt, 'use_fc', True)
self.use_att = getattr(opt, 'use_att', True)
self.use_box = getattr(opt, 'use_box', 0)
self.norm_att_feat = getattr(opt, 'norm_att_feat', 0)
self.norm_box_feat = getattr(opt, 'norm_box_feat', 0)
# load the json file which contains additional information about the dataset
print('DataLoader loading json file: ', opt.input_json)
self.info = json.load(open(self.opt.input_json))
if 'ix_to_word' in self.info:
self.ix_to_word = self.info['ix_to_word']
self.vocab_size = len(self.ix_to_word)
print('vocab size is ', self.vocab_size)
# open the hdf5 file
print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5)
"""
Setting input_label_h5 to none is used when only doing generation.
For example, when you need to test on coco test set.
"""
if self.opt.input_label_h5 != 'none':
self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core')
# load in the sequence data
seq_size = self.h5_label_file['labels'].shape
self.label = self.h5_label_file['labels'][:]
self.seq_length = seq_size[1]
print('max sequence length in data is', self.seq_length)
# load the pointers in full to RAM (should be small enough)
self.label_start_ix = self.h5_label_file['label_start_ix'][:]
self.label_end_ix = self.h5_label_file['label_end_ix'][:]
else:
self.seq_length = 1
self.data_in_memory = getattr(opt, 'data_in_memory', False)
self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory)
self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory)
self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory)
self.num_images = len(self.info['images']) # self.label_start_ix.shape[0]
print('read %d image features' %(self.num_images))
# separate out indexes for each of the provided splits
self.split_ix = {'train': [], 'val': [], 'test': []}
for ix in range(len(self.info['images'])):
img = self.info['images'][ix]
if not 'split' in img:
self.split_ix['train'].append(ix)
self.split_ix['val'].append(ix)
self.split_ix['test'].append(ix)
elif img['split'] == 'train':
self.split_ix['train'].append(ix)
elif img['split'] == 'val':
self.split_ix['val'].append(ix)
elif img['split'] == 'test':
self.split_ix['test'].append(ix)
elif opt.train_only == 0: # restval
self.split_ix['train'].append(ix)
print('assigned %d images to split train' %len(self.split_ix['train']))
print('assigned %d images to split val' %len(self.split_ix['val']))
print('assigned %d images to split test' %len(self.split_ix['test']))
def get_captions(self, ix, seq_per_img):
# fetch the sequence labels
ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1
ix2 = self.label_end_ix[ix] - 1
ncap = ix2 - ix1 + 1 # number of captions available for this image
assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t'
random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
if ncap < seq_per_img:
# we need to subsample (with replacement)
seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int')
for q in range(seq_per_img):
ixl = random.randint(ix1,ix2)
seq[q, :] = self.label[ixl, :self.seq_length]
else:
ixl = random.randint(ix1, ix2 - seq_per_img + 1)
seq = self.label[ixl: ixl + seq_per_img, :self.seq_length]
return seq
def collate_func(self, batch, split):
seq_per_img = self.seq_per_img
fc_batch = []
att_batch = []
label_batch = []
wrapped = False
infos = []
gts = []
for sample in batch:
# fetch image
tmp_fc, tmp_att, tmp_seq, \
ix, it_pos_now, tmp_wrapped = sample
if tmp_wrapped:
wrapped = True
fc_batch.append(tmp_fc)
att_batch.append(tmp_att)
tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int')
if hasattr(self, 'h5_label_file'):
# if there is ground truth
tmp_label[:, 1 : self.seq_length + 1] = tmp_seq
label_batch.append(tmp_label)
# Used for reward evaluation
if hasattr(self, 'h5_label_file'):
# if there is ground truth
gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]])
else:
gts.append([])
# record associated info as well
info_dict = {}
info_dict['ix'] = ix
info_dict['id'] = self.info['images'][ix]['id']
info_dict['file_path'] = self.info['images'][ix].get('file_path', '')
infos.append(info_dict)
# #sort by att_feat length
# fc_batch, att_batch, label_batch, gts, infos = \
# zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True))
fc_batch, att_batch, label_batch, gts, infos = \
zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True))
data = {}
data['fc_feats'] = np.stack(fc_batch)
# merge att_feats
max_att_len = max([_.shape[0] for _ in att_batch])
data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32')
for i in range(len(att_batch)):
data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i]
data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32')
for i in range(len(att_batch)):
data['att_masks'][i, :att_batch[i].shape[0]] = 1
# set att_masks to None if attention features have same length
if data['att_masks'].sum() == data['att_masks'].size:
data['att_masks'] = None
data['labels'] = np.vstack(label_batch)
# generate mask
nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels'])))
mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32')
for ix, row in enumerate(mask_batch):
row[:nonzeros[ix]] = 1
data['masks'] = mask_batch
data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1)
data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1)
data['gts'] = gts # all ground truth captions of each images
data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample
'it_max': len(self.split_ix[split]), 'wrapped': wrapped}
data['infos'] = infos
data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor
return data
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
ix, it_pos_now, wrapped = index #self.split_ix[index]
if self.use_att:
att_feat = self.att_loader.get(str(self.info['images'][ix]['id']))
# shape: (14,14,4096)
# Reshape to K x C
att_feat = att_feat.reshape(-1, att_feat.shape[-1])
# shape:(196,4096)
if self.norm_att_feat:
att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True)
if self.use_box:
box_feat = self.box_loader.get(str(self.info['images'][ix]['id']))
# devided by image width and height
x1,y1,x2,y2 = np.hsplit(box_feat, 4)
h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width']
box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1??
if self.norm_box_feat:
box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True)
att_feat = np.hstack([att_feat, box_feat])
# sort the features by the size of boxes
att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True))
else:
att_feat = np.zeros((0,0), dtype='float32')
if self.use_fc:
try:
fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id']))
except:
# Use average of attention when there is no fc provided (For bottomup feature)
fc_feat = att_feat.mean(0)
else:
fc_feat = np.zeros((0), dtype='float32')
if hasattr(self, 'h5_label_file'):
seq = self.get_captions(ix, self.seq_per_img)
else:
seq = None
return (fc_feat,
att_feat, seq,
ix, it_pos_now, wrapped)
def __len__(self):
return len(self.info['images'])
class DataLoader:
def __init__(self, opt):
self.opt = opt
self.batch_size = self.opt.batch_size
self.dataset = Dataset(opt)
# Initialize loaders and iters
self.loaders, self.iters = {}, {}
for split in ['train', 'val', 'test']:
if split == 'train':
sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True)
else:
sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False)
self.loaders[split] = data.DataLoader(dataset=self.dataset,
batch_size=self.batch_size,
sampler=sampler,
pin_memory=True,
num_workers=4, # 4 is usually enough
collate_fn=partial(self.dataset.collate_func, split=split),
drop_last=False)
self.iters[split] = iter(self.loaders[split])
def get_batch(self, split):
try:
data = next(self.iters[split])
except StopIteration:
self.iters[split] = iter(self.loaders[split])
data = next(self.iters[split])
return data
def reset_iterator(self, split):
self.loaders[split].sampler._reset_iter()
self.iters[split] = iter(self.loaders[split])
def get_vocab_size(self):
return self.dataset.get_vocab_size()
@property
def vocab_size(self):
return self.get_vocab_size()
def get_vocab(self):
return self.dataset.get_vocab()
def get_seq_length(self):
return self.dataset.get_seq_length()
@property
def seq_length(self):
return self.get_seq_length()
def state_dict(self):
def get_prefetch_num(split):
if self.loaders[split].num_workers > 0:
return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size
else:
return 0
return {split: loader.sampler.state_dict(get_prefetch_num(split)) \
for split, loader in self.loaders.items()}
def load_state_dict(self, state_dict=None):
if state_dict is None:
return
for split in self.loaders.keys():
self.loaders[split].sampler.load_state_dict(state_dict[split])
class MySampler(data.sampler.Sampler):
def __init__(self, index_list, shuffle, wrap):
self.index_list = index_list
self.shuffle = shuffle
self.wrap = wrap
# if wrap, there will be not stop iteration called
# wrap True used during training, and wrap False used during test.
self._reset_iter()
def __iter__(self):
return self
def __next__(self):
wrapped = False
if self.iter_counter == len(self._index_list):
self._reset_iter()
if self.wrap:
wrapped = True
else:
raise StopIteration()
if len(self._index_list) == 0: # overflow when 0 samples
return None
elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped)
self.iter_counter += 1
return elem
def next(self):
return self.__next__()
def _reset_iter(self):
np.random.seed(42)
if self.shuffle:
rand_perm = npr.permutation(len(self.index_list))
self._index_list = [self.index_list[_] for _ in rand_perm]
else:
self._index_list = self.index_list
self.iter_counter = 0
def __len__(self):
return len(self.index_list)
def load_state_dict(self, state_dict=None):
if state_dict is None:
return
self._index_list = state_dict['index_list']
self.iter_counter = state_dict['iter_counter']
def state_dict(self, prefetched_num=None):
prefetched_num = prefetched_num or 0
return {
'index_list': self._index_list,
'iter_counter': self.iter_counter - prefetched_num
}
|