File size: 5,033 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import h5py
import os
import numpy as np
import random
import torch
import skimage
import skimage.io
import scipy.misc

from torchvision import transforms as trn
preprocess = trn.Compose([
        #trn.ToTensor(),
        trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# from ..utils.resnet_utils import myResnet
# from ..utils import resnet

from captioning.utils.resnet_utils import myResnet
from captioning.utils import resnet


class DataLoaderRaw():
    
    def __init__(self, opt):
        self.opt = opt
        self.coco_json = opt.get('coco_json', '')
        self.folder_path = opt.get('folder_path', '')

        self.batch_size = opt.get('batch_size', 1)
        self.seq_per_img = 1

        # Load resnet
        self.cnn_model = opt.get('cnn_model', 'resnet101')
        self.my_resnet = getattr(resnet, self.cnn_model)()
        self.my_resnet.load_state_dict(torch.load('./data/imagenet_weights/'+self.cnn_model+'.pth'))
        self.my_resnet = myResnet(self.my_resnet)
        self.my_resnet.cuda()
        self.my_resnet.eval()



        # load the json file which contains additional information about the dataset
        print('DataLoaderRaw loading images from folder: ', self.folder_path)

        self.files = []
        self.ids = []

        print(len(self.coco_json))
        if len(self.coco_json) > 0:
            print('reading from ' + opt.coco_json)
            # read in filenames from the coco-style json file
            self.coco_annotation = json.load(open(self.coco_json))
            for k,v in enumerate(self.coco_annotation['images']):
                fullpath = os.path.join(self.folder_path, v['file_name'])
                self.files.append(fullpath)
                self.ids.append(v['id'])
        else:
            # read in all the filenames from the folder
            print('listing all images in directory ' + self.folder_path)
            def isImage(f):
                supportedExt = ['.jpg','.JPG','.jpeg','.JPEG','.png','.PNG','.ppm','.PPM']
                for ext in supportedExt:
                    start_idx = f.rfind(ext)
                    if start_idx >= 0 and start_idx + len(ext) == len(f):
                        return True
                return False

            n = 1
            for root, dirs, files in os.walk(self.folder_path, topdown=False):
                for file in files:
                    fullpath = os.path.join(self.folder_path, file)
                    if isImage(fullpath):
                        self.files.append(fullpath)
                        self.ids.append(str(n)) # just order them sequentially
                        n = n + 1

        self.N = len(self.files)
        print('DataLoaderRaw found ', self.N, ' images')

        self.iterator = 0

        # Nasty
        self.dataset = self  # to fix the bug in eval

    def get_batch(self, split, batch_size=None):
        batch_size = batch_size or self.batch_size

        # pick an index of the datapoint to load next
        fc_batch = np.ndarray((batch_size, 2048), dtype = 'float32')
        att_batch = np.ndarray((batch_size, 14, 14, 2048), dtype = 'float32')
        max_index = self.N
        wrapped = False
        infos = []

        for i in range(batch_size):
            ri = self.iterator
            ri_next = ri + 1
            if ri_next >= max_index:
                ri_next = 0
                wrapped = True
                # wrap back around
            self.iterator = ri_next

            img = skimage.io.imread(self.files[ri])

            if len(img.shape) == 2:
                img = img[:,:,np.newaxis]
                img = np.concatenate((img, img, img), axis=2)

            img = img[:,:,:3].astype('float32')/255.0
            img = torch.from_numpy(img.transpose([2,0,1])).cuda()
            img = preprocess(img)
            with torch.no_grad():
                tmp_fc, tmp_att = self.my_resnet(img)

            fc_batch[i] = tmp_fc.data.cpu().float().numpy()
            att_batch[i] = tmp_att.data.cpu().float().numpy()

            info_struct = {}
            info_struct['id'] = self.ids[ri]
            info_struct['file_path'] = self.files[ri]
            infos.append(info_struct)

        data = {}
        data['fc_feats'] = fc_batch
        data['att_feats'] = att_batch.reshape(batch_size, -1, 2048)
        data['labels'] = np.zeros([batch_size, 0])
        data['masks'] = None
        data['att_masks'] = None
        data['bounds'] = {'it_pos_now': self.iterator, 'it_max': self.N, 'wrapped': wrapped}
        data['infos'] = infos

        data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor

        return data

    def reset_iterator(self, split):
        self.iterator = 0

    def get_vocab_size(self):
        return len(self.ix_to_word)

    def get_vocab(self):
        return self.ix_to_word