File size: 4,268 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# This file is the implementation for ensemble evaluation.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *

from .CaptionModel import CaptionModel
from .AttModel import pack_wrapper, AttModel

class AttEnsemble(AttModel):
    def __init__(self, models, weights=None):
        CaptionModel.__init__(self)
        # super(AttEnsemble, self).__init__()

        self.models = nn.ModuleList(models)
        self.vocab_size = models[0].vocab_size
        self.seq_length = models[0].seq_length
        self.bad_endings_ix = models[0].bad_endings_ix
        self.ss_prob = 0
        weights = weights or [1.0] * len(self.models)
        self.register_buffer('weights', torch.tensor(weights))

    def init_hidden(self, batch_size):
        state = [m.init_hidden(batch_size) for m in self.models]
        return self.pack_state(state)

    def pack_state(self, state):
        self.state_lengths = [len(_) for _ in state]
        return sum([list(_) for _ in state], [])

    def unpack_state(self, state):
        out = []
        for l in self.state_lengths:
            out.append(state[:l])
            state = state[l:]
        return out

    def embed(self, it):
        return [m.embed(it) for m in self.models]

    def core(self, *args):
        return zip(*[m.core(*_) for m, _ in zip(self.models, zip(*args))])

    def get_logprobs_state(self, it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state, output_logsoftmax=1):
        # 'it' contains a word index
        xt = self.embed(it)

        state = self.unpack_state(state)
        output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, state, tmp_att_masks)
        logprobs = torch.stack([F.softmax(m.logit(output[i]), dim=1) for i,m in enumerate(self.models)], 2).mul(self.weights).div(self.weights.sum()).sum(-1).log()

        return logprobs, self.pack_state(state)

    def _prepare_feature(self, *args):
        return tuple(zip(*[m._prepare_feature(*args) for m in self.models]))

    def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
        beam_size = opt.get('beam_size', 10)
        batch_size = fc_feats.size(0)

        fc_feats, att_feats, p_att_feats, att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = torch.LongTensor(self.seq_length, batch_size).zero_()
        seqLogprobs = torch.FloatTensor(self.seq_length, batch_size, self.vocab_size + 1)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            state = self.init_hidden(beam_size)
            tmp_fc_feats = [fc_feats[i][k:k+1].expand(beam_size, fc_feats[i].size(1)) for i,m in enumerate(self.models)]
            tmp_att_feats = [att_feats[i][k:k+1].expand(*((beam_size,)+att_feats[i].size()[1:])).contiguous() for i,m in enumerate(self.models)]
            tmp_p_att_feats = [p_att_feats[i][k:k+1].expand(*((beam_size,)+p_att_feats[i].size()[1:])).contiguous() for i,m in enumerate(self.models)]
            tmp_att_masks = [att_masks[i][k:k+1].expand(*((beam_size,)+att_masks[i].size()[1:])).contiguous() if att_masks[i] is not None else att_masks[i] for i,m in enumerate(self.models)]

            it = fc_feats[0].data.new(beam_size).long().zero_()
            logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state)

            self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
            seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
            seqLogprobs[:, k] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
        # return the samples and their log likelihoods